Implementation of a finite-difference micromagnetic model on GPU hardware

被引:5
|
作者
Vansteenkiste, Arne [1 ]
Van de Wiele, Ben [2 ]
Dupre, Luc [2 ]
Van Waeyenberge, Bartel [1 ]
De Zutter, Daniel [3 ]
机构
[1] Univ Ghent, Dept Solid State Sci, B-9000 Ghent, Belgium
[2] Univ Ghent, Dept Elect Energy Syst & Automat, B-9000 Ghent, Belgium
[3] Univ Ghent, Dept Informat Technol INTEC, B-9000 Ghent, Belgium
关键词
GPU; micromagnetism; field calculation; sparse Fourier transform; racetrack memory; SIMULATIONS;
D O I
10.1002/jnm.1835
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed a micromagnetic simulator for graphical processing units (GPU), using the CUDA framework. In this paper, we discuss the optimization of the effective field calculation, both from a mathematical and from a hardware-specific point of view. By using a finite-difference discretization scheme, the long-range magnetostatic field can be calculated using fast Fourier transforms, an approach well suited for the GPU. We show how the implementation can be tuned to the GPU hardware and how the performance can be further increased by dealing with the large number of zeros that typically occurs in the micromagnetic field computation. Additionally, we show how the ferromagnetic exchange interaction can be readily included in the magnetostatic field calculation without any additional computational cost. The resulting high-performance software can be used to run large-scale simulations that would have been very time-consuming on regular CPU hardware. As an example, we present a case study on the de-pinning of domain walls in racetrack memory devices. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:366 / 375
页数:10
相关论文
共 50 条
  • [1] Moving magnets in a micromagnetic finite-difference framework
    Rissanen, Ilari
    Laurson, Lasse
    PHYSICAL REVIEW E, 2018, 97 (05)
  • [2] A standard cell hardware implementation for finite-difference time domain (FDTD) calculation
    Verducci, L
    Placidi, P
    Ciampolini, P
    Scorzoni, A
    Roselli, L
    2003 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2003, : 2085 - 2088
  • [3] Custom hardware implementation of the Finite-Difference Time-Domain (FDTD) method
    Schneider, RN
    Okoniewski, MM
    Turner, LE
    2002 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2002, : 875 - 878
  • [4] Finite-Difference and Edge Finite-Element Approaches for Dynamic Micromagnetic Modeling
    Van de Wiele, Ben
    Manzin, Alessandra
    Bottauscio, Oriano
    Chiampi, Mario
    Dupre, Luc
    Olyslager, Femke
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (11) : 3137 - 3140
  • [5] Hardware Implementation of a Three-Dimensional Finite-Difference Time-Domain Algorithm
    Durbano, James P.
    Ortiz, Fernando E.
    Humphrey, John R.
    Mirotznik, Mark S.
    Prather, Dennis W.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2003, 2 (02): : 54 - 57
  • [6] Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units
    Fu, Sidi
    Cui, Weilong
    Hu, Matthew
    Chang, Ruinan
    Donahue, Michael J.
    Lomakin, Vitaliy
    IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (04)
  • [7] FINITE-DIFFERENCE IMPLEMENTATION OF DISTRIBUTED PARAMETER FILTERS
    KODA, M
    AUTOMATICA, 1979, 15 (06) : 687 - 692
  • [8] Fourier finite-difference reverse time migration using GPU
    Duan X.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2020, 55 (05): : 1039 - 1046
  • [9] GPU implementation of curved-grid finite-difference modelling for non-planar rupture dynamics
    Zhang, Wenqiang
    Zhang, Zhenguo
    Li, Mengyang
    Chen, Xiaofei
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 222 (03) : 2121 - 2135
  • [10] A test bed for a finite-difference time domain micromagnetic program with eddy currents
    Yanik, L
    Della Torre, E
    Donahue, MJ
    PHYSICA B-CONDENSED MATTER, 2004, 343 (1-4) : 216 - 221