Implementation of a finite-difference micromagnetic model on GPU hardware

被引:5
|
作者
Vansteenkiste, Arne [1 ]
Van de Wiele, Ben [2 ]
Dupre, Luc [2 ]
Van Waeyenberge, Bartel [1 ]
De Zutter, Daniel [3 ]
机构
[1] Univ Ghent, Dept Solid State Sci, B-9000 Ghent, Belgium
[2] Univ Ghent, Dept Elect Energy Syst & Automat, B-9000 Ghent, Belgium
[3] Univ Ghent, Dept Informat Technol INTEC, B-9000 Ghent, Belgium
关键词
GPU; micromagnetism; field calculation; sparse Fourier transform; racetrack memory; SIMULATIONS;
D O I
10.1002/jnm.1835
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed a micromagnetic simulator for graphical processing units (GPU), using the CUDA framework. In this paper, we discuss the optimization of the effective field calculation, both from a mathematical and from a hardware-specific point of view. By using a finite-difference discretization scheme, the long-range magnetostatic field can be calculated using fast Fourier transforms, an approach well suited for the GPU. We show how the implementation can be tuned to the GPU hardware and how the performance can be further increased by dealing with the large number of zeros that typically occurs in the micromagnetic field computation. Additionally, we show how the ferromagnetic exchange interaction can be readily included in the magnetostatic field calculation without any additional computational cost. The resulting high-performance software can be used to run large-scale simulations that would have been very time-consuming on regular CPU hardware. As an example, we present a case study on the de-pinning of domain walls in racetrack memory devices. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:366 / 375
页数:10
相关论文
共 50 条
  • [21] Reduced memory implementation of a local elastic finite-difference solver
    Jaimes-Osorio, Ligia Elena
    Malcolm, Alison
    Zheglova, Polina
    Koene, Erik F. M.
    Thomsen, Henrik R.
    GEOPHYSICS, 2021, 86 (03) : F25 - F33
  • [22] A GPU Implementation of the 2-D Finite-Difference Time-Domain Code using High Level Shader Language
    Takada, N.
    Masuda, N.
    Tanaka, T.
    Abe, Y.
    Ito, T.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2008, 23 (04): : 309 - 316
  • [23] GPU IMPLEMENTATION OF SPLIT-FIELD FINITE-DIFFERENCE TIME-DOMAIN METHOD FOR DRUDE-LORENTZ DISPERSIVE MEDIA
    Shahmansouri, A.
    Rashidian, B.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2012, 125 : 55 - 77
  • [24] Optimized implicit finite-difference and Fourier finite-difference migration for VTI media
    Shan, Guojian
    GEOPHYSICS, 2009, 74 (06) : WCA189 - WCA197
  • [25] Reversibility Diagrams: a Tool for Finite-Difference Model Study
    Goryainov, Sergey V.
    Andreev, Valerii S.
    Kozak, Maria N.
    Kozachek, Roman A.
    Rybin, Vyacheslav G.
    PROCEEDINGS OF THE 2018 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (EICONRUS), 2018, : 194 - 197
  • [26] ACCURACY OF TRAJECTORY CALCULATION IN A FINITE-DIFFERENCE CIRCULATION MODEL
    BENNETT, JR
    CLITES, AH
    JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 68 (02) : 272 - 282
  • [27] A Hybrid Finite-Difference and Analytic Element Groundwater Model
    Haitjema, H. M.
    Feinstein, D. T.
    Hunt, R. J.
    Gusyev, M. A.
    GROUND WATER, 2010, 48 (04) : 538 - 548
  • [28] An unconditionally convergent finite-difference scheme for the SIR model
    Piyawong, W
    Twizell, EH
    Gumel, AB
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (2-3) : 611 - 625
  • [29] RESONANCE OF INTERNAL WAVES IN FJORDS - A FINITE-DIFFERENCE MODEL
    CUSHMANROISIN, B
    TVERBERG, V
    PAVIA, EG
    JOURNAL OF MARINE RESEARCH, 1989, 47 (03) : 547 - 567
  • [30] GPU Elastic Modeling Using an Optimal Staggered-Grid Finite-Difference Operator
    Wang Jian
    Meng Xiaohong
    Liu Hong
    Zheng Wanqiu
    Liu Zhiwei
    JOURNAL OF THEORETICAL AND COMPUTATIONAL ACOUSTICS, 2018, 26 (02):