Ruelle operator for infinite conformal iterated function systems

被引:1
|
作者
Chen, Xiao-Peng [2 ,3 ]
Wu, Li-Yan [1 ,4 ]
Ye, Yuan-Ling [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[4] Guangdong Coll Ind & Commerce, Dept Comp Engn, Guangzhou 510510, Guangdong, Peoples R China
关键词
THERMODYNAMIC FORMALISM; SEPARATION PROPERTIES; HAUSDORFF MEASURE;
D O I
10.1016/j.chaos.2012.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X; {w(j)}(j-1)(m) {P-j}(j=1)(m)) (2 <= m < infinity) be a contractive iterated function system (IFS), where Xis a compact subset of R-d. It is well known that there exists a unique nonempty compact set K such that K = U(j=1)(m)w(j)(K). Moreover, the Ruelle operator on C(K) determined by the IFS (X; {w(j))(j-1;)(m) {Pj}(j-1)(m)) (2 <= m < infinity) has been extensively studied. In the present paper, the Ruelle operators determined by the infinite conformal IFSs are discussed. Some separation properties for the infinite conformal IFSs are investigated by using the Ruelle operator. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1521 / 1530
页数:10
相关论文
共 50 条
  • [31] Conformal families of measures for general iterated function systems
    Denker, Manfred
    Yuri, Michiko
    RECENT TRENDS IN ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 631 : 93 - 108
  • [32] Overlap Functions for Measures in Conformal Iterated Function Systems
    Mihailescu, Eugen
    Urbanski, Mariusz
    JOURNAL OF STATISTICAL PHYSICS, 2016, 162 (01) : 43 - 62
  • [33] Overlap Functions for Measures in Conformal Iterated Function Systems
    Eugen Mihailescu
    Mariusz Urbański
    Journal of Statistical Physics, 2016, 162 : 43 - 62
  • [34] REGULARITY OF MULTIFRACTAL SPECTRA OF CONFORMAL ITERATED FUNCTION SYSTEMS
    Jaerisch, Johannes
    Kesseboehmer, Marc
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (01) : 313 - 330
  • [35] Arcwise connected attractors of infinite iterated function systems
    Dumitru, Dan
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (02): : 91 - 98
  • [36] Topological version of generalized (infinite) iterated function systems
    Dumitru, Dan
    Ioana, Loredana
    Sfetcu, Razvan-Cornel
    Strobin, Filip
    CHAOS SOLITONS & FRACTALS, 2015, 71 : 78 - 90
  • [37] Type Sets and the Attractors of Infinite Iterated Function Systems
    Chitescu, Ion
    Ioana, Loredana
    Miculescu, Radu
    RESULTS IN MATHEMATICS, 2014, 66 (3-4) : 511 - 524
  • [38] Remarks on limit sets of infinite iterated function systems
    Hille, Martial R.
    MONATSHEFTE FUR MATHEMATIK, 2012, 168 (02): : 215 - 237
  • [39] A computational ergodic theorem for infinite iterated function systems
    Nguyen Dinh Cong
    Son, Doan Thai
    Siegmund, Stefan
    STOCHASTICS AND DYNAMICS, 2008, 8 (03) : 365 - 381
  • [40] On Hyperbolic Affine Generalized Infinite Iterated Function Systems
    Alexandru Mihail
    Silviu-Aurelian Urziceanu
    Results in Mathematics, 2020, 75