On Hyperbolic Affine Generalized Infinite Iterated Function Systems

被引:0
|
作者
Alexandru Mihail
Silviu-Aurelian Urziceanu
机构
[1] Faculty of Mathematics and Computer Science University of Bucharest,
[2] Romania,undefined
[3] Faculty of Mathematics and Computer Science University of Piteşti,undefined
[4] Romania,undefined
来源
Results in Mathematics | 2020年 / 75卷
关键词
Affine generalized infinite iterated function system (AGIIFS); hyperbolic AGIIFS; -hyperbolic AGIIFS; attractor; strictly topologically contractive AGIIFS; uniformly point-fibred AGIIFS; Primary 28A80; Secondary 54H20;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to provide alternative characterizations of hyperbolic affine generalized infinite iterated function systems. More precisely, we prove that, for such a system F=((X,.),(fi)i∈I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}=((X,\left\| .\right\| ),(f_{i})_{i\in I})$$\end{document}, among others, the following statements are equivalent: (a) F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} is hyperbolic. (b) F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {F}}$$\end{document} has attractor. (c) F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} is strictly topologically contractive. (d) F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} is uniformly point-fibred. In this way we generalize the result from the paper by Miculescu and Mihail (J Math Anal Appl 407:56–68, 2013). More equivalent statements are given for the particular case when I is finite and X is finite dimensional.
引用
收藏
相关论文
共 50 条
  • [1] On Hyperbolic Affine Generalized Infinite Iterated Function Systems
    Mihail, Alexandru
    Urziceanu, Silviu-Aurelian
    RESULTS IN MATHEMATICS, 2020, 75 (03)
  • [2] Alternative characterization of hyperbolic affine infinite iterated function systems
    Miculescu, Radu
    Mihail, Alexandru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (01) : 56 - 68
  • [3] A CHARACTERIZATION OF HYPERBOLIC AFFINE ITERATED FUNCTION SYSTEMS
    Atkins, Ross
    Barnsley, Michael F.
    Vince, Andrew
    Wilson, David C.
    TOPOLOGY PROCEEDINGS, VOL 36, 2010, 36 : 189 - 211
  • [4] GENERALIZED ITERATED FUNCTION SYSTEMS ON HYPERBOLIC NUMBER PLANE
    Yafte Tellez-Sanchez, Gamaliel
    Bory-Reyes, Juan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (04)
  • [5] Invariant Measure for Infinite Weakly Hyperbolic Iterated Function Systems
    Chen, Xiaopeng
    Li, Chang-Bing
    Ye, Yuan-Ling
    JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (01)
  • [6] Invariant Measure for Infinite Weakly Hyperbolic Iterated Function Systems
    Xiaopeng Chen
    Chang-Bing Li
    Yuan-Ling Ye
    Journal of Statistical Physics, 2021, 182
  • [7] Topological version of generalized (infinite) iterated function systems
    Dumitru, Dan
    Ioana, Loredana
    Sfetcu, Razvan-Cornel
    Strobin, Filip
    CHAOS SOLITONS & FRACTALS, 2015, 71 : 78 - 90
  • [8] Dimension spectrum of infinite self-affine iterated function systems
    Jurga, Natalia
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (03):
  • [9] Dimension spectrum of infinite self-affine iterated function systems
    Natalia Jurga
    Selecta Mathematica, 2021, 27
  • [10] Contractive affine generalized iterated function systems which are topologically contracting
    Miculescu, Radu
    Mihail, Alexandru
    Urziceanu, Silviu-Aurelian
    CHAOS SOLITONS & FRACTALS, 2020, 141