Alternative characterization of hyperbolic affine infinite iterated function systems

被引:16
|
作者
Miculescu, Radu [1 ]
Mihail, Alexandru [1 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
关键词
Affine infinite iterated function system; Comparison function; Attractor of an affine infinite iterated function system; phi-hyperbolic affine infinite iterated function system; Uniformly point-fibre affine infinite iterated function system; Convex body; Strictly topologically contractive affine infinite iterated function system; SPACE; SETS; IFS;
D O I
10.1016/j.jmaa.2013.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a characterization of hyperbolic affine infinite iterated function systems defined on an arbitrary normed space. Our result is a generalization of Theorem 1.1 from the paper "A characterization of hyperbolic affine iterated function systems", Topology Proceedings, 36 (2010), 189-211, by R. Atkins, M. Barnsley, A. Vince and D. Wilson. Some examples are presented. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 68
页数:13
相关论文
共 50 条
  • [1] On Hyperbolic Affine Generalized Infinite Iterated Function Systems
    Alexandru Mihail
    Silviu-Aurelian Urziceanu
    Results in Mathematics, 2020, 75
  • [2] On Hyperbolic Affine Generalized Infinite Iterated Function Systems
    Mihail, Alexandru
    Urziceanu, Silviu-Aurelian
    RESULTS IN MATHEMATICS, 2020, 75 (03)
  • [3] A CHARACTERIZATION OF HYPERBOLIC AFFINE ITERATED FUNCTION SYSTEMS
    Atkins, Ross
    Barnsley, Michael F.
    Vince, Andrew
    Wilson, David C.
    TOPOLOGY PROCEEDINGS, VOL 36, 2010, 36 : 189 - 211
  • [4] Invariant Measure for Infinite Weakly Hyperbolic Iterated Function Systems
    Chen, Xiaopeng
    Li, Chang-Bing
    Ye, Yuan-Ling
    JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (01)
  • [5] Invariant Measure for Infinite Weakly Hyperbolic Iterated Function Systems
    Xiaopeng Chen
    Chang-Bing Li
    Yuan-Ling Ye
    Journal of Statistical Physics, 2021, 182
  • [6] Dimension spectrum of infinite self-affine iterated function systems
    Jurga, Natalia
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (03):
  • [7] Dimension spectrum of infinite self-affine iterated function systems
    Natalia Jurga
    Selecta Mathematica, 2021, 27
  • [8] Affine Mappings in Iterated Function Systems
    Zeitler H.
    Results in Mathematics, 2004, 46 (1-2) : 181 - 194
  • [9] SHADOWING IN AFFINE ITERATED FUNCTION SYSTEMS
    Glavan, Vasile
    Gutu, Valeriu
    FIXED POINT THEORY, 2009, 10 (02): : 229 - 243
  • [10] On -Weakly Hyperbolic Iterated Function Systems
    Melo, Italo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (04): : 717 - 732