Ruelle operator for infinite conformal iterated function systems

被引:1
|
作者
Chen, Xiao-Peng [2 ,3 ]
Wu, Li-Yan [1 ,4 ]
Ye, Yuan-Ling [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[4] Guangdong Coll Ind & Commerce, Dept Comp Engn, Guangzhou 510510, Guangdong, Peoples R China
关键词
THERMODYNAMIC FORMALISM; SEPARATION PROPERTIES; HAUSDORFF MEASURE;
D O I
10.1016/j.chaos.2012.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X; {w(j)}(j-1)(m) {P-j}(j=1)(m)) (2 <= m < infinity) be a contractive iterated function system (IFS), where Xis a compact subset of R-d. It is well known that there exists a unique nonempty compact set K such that K = U(j=1)(m)w(j)(K). Moreover, the Ruelle operator on C(K) determined by the IFS (X; {w(j))(j-1;)(m) {Pj}(j-1)(m)) (2 <= m < infinity) has been extensively studied. In the present paper, the Ruelle operators determined by the infinite conformal IFSs are discussed. Some separation properties for the infinite conformal IFSs are investigated by using the Ruelle operator. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1521 / 1530
页数:10
相关论文
共 50 条
  • [21] Quantization dimension for conformal iterated function systems
    Lindsay, LJ
    Mauldin, RD
    NONLINEARITY, 2002, 15 (01) : 189 - 199
  • [22] On the fractal operator of a mixed possibly infinite iterated function system
    Anghelina, Bogdan Cristian
    Miculescu, Radu
    Mihail, Alexandru
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2025, 119 (02)
  • [23] Dimensions and measures in infinite iterated function systems
    Mauldin, RD
    Urbanski, M
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1996, 73 : 105 - 154
  • [24] ERGODIC THEOREM FOR INFINITE ITERATED FUNCTION SYSTEMS
    吴享哲
    卢英花
    吉元君
    Applied Mathematics and Mechanics(English Edition), 2005, (04) : 465 - 469
  • [25] Ergodic theorem for infinite iterated function systems
    O H.-C.
    Ro Y.-H.
    Kil W.-G.
    Applied Mathematics and Mechanics, 2005, 26 (4) : 465 - 469
  • [26] Separation properties for infinite iterated function systems
    Liu, Hui
    Zhu, Xiangling
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [27] Separation properties for infinite iterated function systems
    Hui Liu
    Xiangling Zhu
    Journal of Inequalities and Applications, 2014
  • [28] Ergodic theorem for infinite iterated function systems
    O, H
    Ro, Y
    Kil, W
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2005, 26 (04) : 465 - 469
  • [29] ABOUT THE ATTRACTORS OF INFINITE ITERATED FUNCTION SYSTEMS
    Dumitru, Dan
    FIXED POINT THEORY, 2017, 18 (01): : 203 - 211
  • [30] Quantitative recurrence properties in conformal iterated function systems
    Seuret, S.
    Wang, B. -W.
    ADVANCES IN MATHEMATICS, 2015, 280 : 472 - 505