Binomial edge ideals of generalized block graphs

被引:3
|
作者
Kumar, Arvind [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Binomial edge ideal; Castelnuovo-Mumford regularity; generalized block graph; extremal Betti number; COHEN-MACAULAY; REGULARITY;
D O I
10.1142/S0218196720500526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify generalized block graphs whose binomial edge ideals admit a unique extremal Betti number. We prove that the Castelnuovo-Mumford regularity of binomial edge ideals of generalized block graphs is bounded below by m(G) + 1, where m(G) is the number of minimal cut sets of the graph G and obtain an improved upper bound for the regularity in terms of the number of maximal cliques and pendant vertices of G.
引用
收藏
页码:1537 / 1554
页数:18
相关论文
共 50 条