Quantum-Dot-Based Resonant Exchange Qubit

被引:204
|
作者
Medford, J. [1 ]
Beil, J. [2 ]
Taylor, J. M. [3 ]
Rashba, E. I. [1 ]
Lu, H. [4 ]
Gossard, A. C. [4 ]
Marcus, C. M. [2 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[3] NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[4] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
COMPUTATION;
D O I
10.1103/PhysRevLett.111.050501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a solid-state qubit in which exchange interactions among confined electrons provide both the static longitudinal field and the oscillatory transverse field, allowing rapid and full qubit control via rf gate-voltage pulses. We demonstrate two-axis control at a detuning sweet spot, where leakage due to hyperfine coupling is suppressed by the large exchange gap. A pi/2-gate time of 2.5 ns and a coherence time of 19 mu s, using multipulse echo, are also demonstrated. Model calculations that include effects of hyperfine noise are in excellent quantitative agreement with experiment.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] New Quantum-Dot-Based Fluorescent Immunosensor for Cancer Biomarker Detection
    Sousa, Mariana P.
    Piloto, Ana Margarida L.
    Pereira, Ana Claudia
    Schmitt, Fernando C.
    Fernandes, Ruben
    Moreira, Felismina T. C.
    CHEMOSENSORS, 2022, 10 (12)
  • [32] Theory of plasmonic quantum-dot-based intermediate band solar cells
    Foroutan, Sina
    Baghban, Hamed
    APPLIED OPTICS, 2016, 55 (13) : 3405 - 3412
  • [33] Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology
    Ravitej Uppu
    Leonardo Midolo
    Xiaoyan Zhou
    Jacques Carolan
    Peter Lodahl
    Nature Nanotechnology, 2021, 16 : 1308 - 1317
  • [34] Practical Guide to Quantum Phase Transitions in Quantum-Dot-Based Tunable Josephson Junctions
    Kadlecova, A.
    Zonda, M.
    Pokorny, V.
    Novotny, T.
    PHYSICAL REVIEW APPLIED, 2019, 11 (04):
  • [35] Simulation study of environmentally friendly quantum-dot-based photovoltaic windows
    Lesyuk, Rostyslav
    Lesnyak, Vladimir
    Herguth, Axel
    Popovych, Dmytro
    Bobitski, Yaroslav
    Klinke, Christian
    Gaponik, Nikolai
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (45) : 11790 - 11797
  • [36] High-power quantum-dot-based semiconductor disk laser
    Butkus, M.
    Wilcox, K. G.
    Rautiainen, J.
    Okhotnikov, O. G.
    Mikhrin, S. S.
    Krestnikov, I. L.
    Kovsh, A. R.
    Hoffmann, M.
    Suedmeyer, T.
    Keller, U.
    Rafailov, E. U.
    OPTICS LETTERS, 2009, 34 (11) : 1672 - 1674
  • [37] A quantum-dot-based fluoroassay for detection of food-borne pathogens
    Mohamadi, Elaheh
    Moghaddasi, Mohammadali
    Farahbakhsh, Afshin
    Kazemi, Abbass
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2017, 174 : 291 - 297
  • [38] Enhanced performance of a quantum-dot-based nanomotor due to Coulomb interactions
    Ludovico, Maria Florencia
    Capone, Massimo
    PHYSICAL REVIEW B, 2018, 98 (23)
  • [39] Quantum-Dot-Based Immunochromatographic Assay for Total IgE in Human Serum
    Berlina, Anna N.
    Taranova, Nadezhda A.
    Zherdev, Anatoly V.
    Sankov, Mikhail N.
    Andreev, Igor V.
    Martynov, Alexandr I.
    Dzantiev, Boris B.
    PLOS ONE, 2013, 8 (10):
  • [40] Resonant-Enhanced Full-Color Emission of Quantum-Dot-Based Display Technology Using a Pulsed Spray Method
    Chen, Kuo-Ju
    Chen, Hsin-Chu
    Tsai, Kai-An
    Lin, Chien-Chung
    Tsai, Hsin-Han
    Chien, Shih-Hsuan
    Cheng, Bo-Siao
    Hsu, Yung-Jung
    Shih, Min-Hsiung
    Tsai, Chih-Hao
    Shih, His-Hsin
    Kuo, Hao-Chung
    ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (24) : 5138 - 5143