Quantum-Dot-Based Resonant Exchange Qubit

被引:204
|
作者
Medford, J. [1 ]
Beil, J. [2 ]
Taylor, J. M. [3 ]
Rashba, E. I. [1 ]
Lu, H. [4 ]
Gossard, A. C. [4 ]
Marcus, C. M. [2 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[3] NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[4] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
COMPUTATION;
D O I
10.1103/PhysRevLett.111.050501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a solid-state qubit in which exchange interactions among confined electrons provide both the static longitudinal field and the oscillatory transverse field, allowing rapid and full qubit control via rf gate-voltage pulses. We demonstrate two-axis control at a detuning sweet spot, where leakage due to hyperfine coupling is suppressed by the large exchange gap. A pi/2-gate time of 2.5 ns and a coherence time of 19 mu s, using multipulse echo, are also demonstrated. Model calculations that include effects of hyperfine noise are in excellent quantitative agreement with experiment.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] High-fidelity resonant gating of a silicon-based quantum dot hybrid qubit
    Dohun Kim
    Daniel R Ward
    Christie B Simmons
    Don E Savage
    Max G Lagally
    Mark Friesen
    Susan N Coppersmith
    Mark A Eriksson
    npj Quantum Information, 1
  • [22] High-fidelity resonant gating of a silicon-based quantum dot hybrid qubit
    Kim, Dohun
    Ward, Daniel R.
    Simmons, Christie B.
    Savage, Don E.
    Lagally, Max G.
    Friesen, Mark
    Coppersmith, Susan N.
    Eriksson, Mark A.
    NPJ QUANTUM INFORMATION, 2015, 1
  • [23] Quantum-Dot-Based Advanced Photonic Devices and Its Applications
    Matsumoto, A.
    Akahane, K.
    Umezawa, T.
    Kita, T.
    Utaka, K.
    Yamamoto, N.
    2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2017,
  • [24] Quantum-Dot-Based (Aero)gels: Control of the Optical Properties
    Wolf, Andre
    Lesnyak, Vladimir
    Gaponik, Nikolai
    Eychmueller, Alexander
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (16): : 2188 - 2193
  • [25] Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display
    Hirayama, Ryuji
    Naruse, Makoto
    Nakayama, Hirotaka
    Tate, Naoya
    Shiraki, Atsushi
    Kakue, Takashi
    Shimobaba, Tomoyoshi
    Ohtsu, Motoichi
    Ito, Tomoyoshi
    SCIENTIFIC REPORTS, 2015, 5
  • [26] Quantum-Dot-Based Photon Emission and Media Conversion for Quantum Information Applications
    Kumano, H.
    Nakajima, H.
    Ekuni, S.
    Idutsu, Y.
    Sasakura, H.
    Suemune, I.
    ADVANCES IN MATHEMATICAL PHYSICS, 2010, 2010
  • [27] Quantum-Dot-Based Aptamer Beacon for the Detection of Potassium Ions
    Wu, Tsai-Chin
    Biswas, Sushmita
    Dutta, Mitra
    Stroscio, Michael A.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2011, 10 (05) : 991 - 995
  • [28] Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display
    Ryuji Hirayama
    Makoto Naruse
    Hirotaka Nakayama
    Naoya Tate
    Atsushi Shiraki
    Takashi Kakue
    Tomoyoshi Shimobaba
    Motoichi Ohtsu
    Tomoyoshi Ito
    Scientific Reports, 5
  • [29] ZnO Nanoparticles for Quantum-Dot-Based Light-Emitting Diodes
    Moyen, Eric
    Kim, Joo Hyun
    Kim, Jeonggi
    Jang, Jin
    ACS APPLIED NANO MATERIALS, 2020, 3 (06) : 5203 - 5211
  • [30] Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges
    Kim, Mee Rahn
    Ma, Dongling
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (01): : 85 - 99