Simulation study of environmentally friendly quantum-dot-based photovoltaic windows

被引:9
|
作者
Lesyuk, Rostyslav [1 ,2 ]
Lesnyak, Vladimir [3 ,4 ]
Herguth, Axel [5 ]
Popovych, Dmytro [2 ]
Bobitski, Yaroslav [6 ,7 ]
Klinke, Christian [1 ,8 ]
Gaponik, Nikolai [3 ,4 ]
机构
[1] Univ Hamburg, Inst Phys Chem, Grindelallee 117, D-20146 Hamburg, Germany
[2] NAS Ukraine, Pidstryhach Inst Appl Problems Mech & Math, Naukowa Str 3b, UA-79060 Lvov, Ukraine
[3] Tech Univ Dresden, Phys Chem, Bergstr 66b, D-01062 Dresden, Germany
[4] Tech Univ Dresden, Ctr Adv Elect Dresden cfAED, Bergstr 66b, D-01062 Dresden, Germany
[5] Univ Konstanz, Dept Phys, Photovolta Div, Univ Str 10, D-78457 Constance, Germany
[6] Lviv Natl Polytech Univ, Photon Dept, Bandery Str 12, UA-79013 Lvov, Ukraine
[7] Univ Rzeszow, Dept Mechatron & Automat, Rejtana Alley 16C, PL-35001 Rzeszow, Poland
[8] Swansea Univ, Dept Chem, Singleton Pk, Swansea SA2 8PP, W Glam, Wales
关键词
LUMINESCENT SOLAR CONCENTRATORS; RAY-TRACING SIMULATIONS; IN-S; EFFICIENCY; NANOCRYSTALS; ENERGY; CONVERSION; EMISSION; CELLS;
D O I
10.1039/c7tc02945d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We modeled a prototype of a photovoltaic window, a passive source of clean energy, using a Monte Carlo ray-tracing method. We considered different geometries, material properties, and edge solar cells to determine the optimal conditions and possible electrical power yield. The modeled photovoltaic window prototype was based on colloidal luminescent low-toxic I-III-VI quantum dots (core/shell CuInS2/ZnS nanocrystals) with large Stokes shifts, high quantum yields, and tunable spectral properties. We also showed the influence of the quantum dot absorption/emission spectra on the resulting spectrum of transmitted light (i.e., the visual appearance of the photovoltaic window) using a chromaticity diagram.
引用
收藏
页码:11790 / 11797
页数:8
相关论文
共 50 条
  • [1] The Dominant Role of Exciton Quenching in PbS Quantum-Dot-Based Photovoltaic Devices
    Wanger, Darcy D.
    Correa, Raoul E.
    Dauler, Eric A.
    Bawendi, Moungi G.
    NANO LETTERS, 2013, 13 (12) : 5907 - 5912
  • [2] Quantum-dot-based photonic devices
    Sugawara, Mitsuru
    Yamamoto, Tsuyoshi
    Ebe, Hiroji
    FUJITSU SCIENTIFIC & TECHNICAL JOURNAL, 2007, 43 (04): : 495 - 501
  • [3] Quantum-dot-based photonic devices
    Fujitsu Laboratories Ltd.
    不详
    不详
    不详
    不详
    Fujitsu Sci Tech J, 2007, 4 (495-501):
  • [4] Advances in Quantum-Dot-Based Displays
    Huang, Yu-Ming
    Singh, Konthoujam James
    Liu, An-Chen
    Lin, Chien-Chung
    Chen, Zhong
    Wang, Kai
    Lin, Yue
    Liu, Zhaojun
    Wu, Tingzhu
    Kuo, Hao-Chung
    NANOMATERIALS, 2020, 10 (07) : 1 - 29
  • [5] Compact quantum-dot-based ultrafast lasers
    Sibbett, W.
    Rafailov, E. U.
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XVI, 2008, 6889
  • [6] Quantum-Dot-Based Resonant Exchange Qubit
    Medford, J.
    Beil, J.
    Taylor, J. M.
    Rashba, E. I.
    Lu, H.
    Gossard, A. C.
    Marcus, C. M.
    PHYSICAL REVIEW LETTERS, 2013, 111 (05)
  • [7] Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay
    Huwer, J.
    Stevenson, R. M.
    Skiba-Szymanska, J.
    Ward, M. B.
    Shields, A. J.
    Felle, M.
    Farrer, I.
    Ritchie, D. A.
    Penty, R. V.
    PHYSICAL REVIEW APPLIED, 2017, 8 (02):
  • [8] Multifunctional quantum-dot-based magnetic chitosan nanobeads
    Tan, WB
    Zhang, Y
    ADVANCED MATERIALS, 2005, 17 (19) : 2375 - +
  • [9] Semiconductor model for quantum-dot-based microcavity lasers
    Gies, Christopher
    Wiersig, Jan
    Lorke, Michael
    Jahnke, Frank
    PHYSICAL REVIEW A, 2007, 75 (01):
  • [10] Quantum-dot-based camera images two colors
    Greenwood, Michael A.
    PHOTONICS SPECTRA, 2007, 41 (11) : 32 - 33