Simulation study of environmentally friendly quantum-dot-based photovoltaic windows

被引:9
|
作者
Lesyuk, Rostyslav [1 ,2 ]
Lesnyak, Vladimir [3 ,4 ]
Herguth, Axel [5 ]
Popovych, Dmytro [2 ]
Bobitski, Yaroslav [6 ,7 ]
Klinke, Christian [1 ,8 ]
Gaponik, Nikolai [3 ,4 ]
机构
[1] Univ Hamburg, Inst Phys Chem, Grindelallee 117, D-20146 Hamburg, Germany
[2] NAS Ukraine, Pidstryhach Inst Appl Problems Mech & Math, Naukowa Str 3b, UA-79060 Lvov, Ukraine
[3] Tech Univ Dresden, Phys Chem, Bergstr 66b, D-01062 Dresden, Germany
[4] Tech Univ Dresden, Ctr Adv Elect Dresden cfAED, Bergstr 66b, D-01062 Dresden, Germany
[5] Univ Konstanz, Dept Phys, Photovolta Div, Univ Str 10, D-78457 Constance, Germany
[6] Lviv Natl Polytech Univ, Photon Dept, Bandery Str 12, UA-79013 Lvov, Ukraine
[7] Univ Rzeszow, Dept Mechatron & Automat, Rejtana Alley 16C, PL-35001 Rzeszow, Poland
[8] Swansea Univ, Dept Chem, Singleton Pk, Swansea SA2 8PP, W Glam, Wales
关键词
LUMINESCENT SOLAR CONCENTRATORS; RAY-TRACING SIMULATIONS; IN-S; EFFICIENCY; NANOCRYSTALS; ENERGY; CONVERSION; EMISSION; CELLS;
D O I
10.1039/c7tc02945d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We modeled a prototype of a photovoltaic window, a passive source of clean energy, using a Monte Carlo ray-tracing method. We considered different geometries, material properties, and edge solar cells to determine the optimal conditions and possible electrical power yield. The modeled photovoltaic window prototype was based on colloidal luminescent low-toxic I-III-VI quantum dots (core/shell CuInS2/ZnS nanocrystals) with large Stokes shifts, high quantum yields, and tunable spectral properties. We also showed the influence of the quantum dot absorption/emission spectra on the resulting spectrum of transmitted light (i.e., the visual appearance of the photovoltaic window) using a chromaticity diagram.
引用
收藏
页码:11790 / 11797
页数:8
相关论文
共 50 条
  • [41] Coherence properties and dynamical photon correlations of quantum-dot-based microcavity lasers
    Wiersig, J.
    Gies, C.
    Jahnke, F.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (02): : 273 - 276
  • [42] Quantum-dot-based full-color micro-LED displays
    Wu, Tingzhu
    Huang, Yu-Ming
    Konthoujam, James Singh
    Chen, Zhong
    Kuo, Hao-Chung
    MICRO LEDS, 2021, 106 : 173 - 201
  • [43] Coherence properties and dynamical photon correlations of quantum-dot-based microcavity lasers
    Gies, C.
    Ritter, S.
    Gartner, P.
    Jahnke, F.
    Assmann, M.
    Bestermann, T.
    Bayer, M.
    Ates, S.
    Ulrich, S. M.
    Michler, P.
    11TH INTERNATIONAL CONFERENCE ON OPTICS OF EXCITONS IN CONFINED SYSTEMS (OECS11), 2010, 210
  • [44] Direct CdTe Quantum-Dot-Based Fluorescence Imaging of Human Serum Proteins
    Na, Na
    Liu, Lu
    Taes, Youri E. C.
    Zhang, Canli
    Huang, Bingrong
    Liu, Yueli
    Ma, Lin
    Ouyang, Jin
    SMALL, 2010, 6 (15) : 1589 - 1592
  • [45] Recent Updates on Functionalized Silicon Quantum-Dot-Based Nanoagents for Biomedical Applications
    Yang, Dan
    Cui, Zhongjie
    Wen, Zhuoqi
    Piao, Zhiyan
    He, Haiyang
    Wei, Xian
    Wang, Le
    Mei, Shiliang
    Zhang, Wanlu
    Guo, Ruiqian
    ACS MATERIALS LETTERS, 2023, 5 (04): : 985 - 1008
  • [46] Misfit management for reduced dislocation formation in epitaxial quantum-dot-based devices
    Gandhi, Jateen S.
    Kim, Choong-Un
    Kirk, Wiley P.
    JOURNAL OF CRYSTAL GROWTH, 2013, 364 : 169 - 177
  • [47] Fabrication of three-dimensional photonic crystals in quantum-dot-based materials
    Gu, Min
    Jia, Baohua
    Li, Jiafang
    Ventura, Michael James
    LASER & PHOTONICS REVIEWS, 2010, 4 (03) : 414 - 431
  • [48] Spin control of hybrid quantum-dot-based radical pairs: Physical chemistry
    Hore, P. J.
    NATURE MATERIALS, 2025, 24 (02) : 171 - 172
  • [49] Role of coherence in quantum-dot-based nanomachines within the Coulomb blockade regime
    Ribetto, Federico D.
    Bustos-Marun, Raul A.
    Calvo, Hernan L.
    PHYSICAL REVIEW B, 2021, 103 (15)
  • [50] Quantum-dot-based deterministic photon-emitter interfaces for scalable photonic quantum technology
    Uppu, Ravitej
    Midolo, Leonardo
    Zhou, Xiaoyan
    Carolan, Jacques
    Lodahl, Peter
    NATURE NANOTECHNOLOGY, 2021, 16 (12) : 1308 - 1317