Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay

被引:32
|
作者
Huwer, J. [1 ]
Stevenson, R. M. [1 ]
Skiba-Szymanska, J. [1 ]
Ward, M. B. [1 ]
Shields, A. J. [1 ]
Felle, M. [1 ,2 ]
Farrer, I. [3 ,4 ]
Ritchie, D. A. [3 ]
Penty, R. V. [2 ]
机构
[1] Toshiba Res Europe Ltd, Cambridge Res Lab, 208 Cambridge Sci Pk,Milton Rd, Cambridge CB4 0GZ, England
[2] Univ Cambridge, Ctr Adv Photon & Elect, JJ Thomson Ave, Cambridge CB3 0FA, England
[3] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[4] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England
来源
PHYSICAL REVIEW APPLIED | 2017年 / 8卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
KEY DISTRIBUTION; TELEPORTATION; CRYPTOGRAPHY; PHOTONS; STATE; FIBER;
D O I
10.1103/PhysRevApplied.8.024007
中图分类号
O59 [应用物理学];
学科分类号
摘要
The development of quantum relays for long-haul and attack-proof quantum communication networks operating with weak coherent laser pulses requires entangled photon sources at telecommunication wavelengths with intrinsic single-photon emission for most practical implementations. Using a semiconductor quantum dot emitting entangled photon pairs in the telecommunication O band, we demonstrate a quantum relay fulfilling both of these conditions. The system achieves a maximum fidelity of 94.5% for implementation of a standard four-state protocol with input states generated by a laser. We further investigate robustness against frequency detuning of the narrow-band input and perform process tomography of the teleporter, revealing operation for arbitrary pure input states, with an average gate fidelity of 83.6%. The results highlight the potential of semiconductor light sources for compact and robust quantum-relay technology that is compatible with existing communication infrastructures.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Growth and Characterization of Telecommunication-Wavelength Quantum Dots Using Bi as a Surfactant
    Okamoto, Hiroshi
    Tawara, Takehiko
    Gotoh, Hideki
    Kamada, Hidehiko
    Sogawa, Tetsuomi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (06) : 06GJ011 - 06GJ016
  • [2] Proposal for generating telecommunication-wavelength entangled photon pairs from a quantum dot by frequency down-conversion
    Wang, Yi-Tao
    Tang, Jian-Shun
    Li, Yu-Long
    Li, Chuan-Feng
    Guo, Guang-Can
    PHYSICAL REVIEW A, 2013, 88 (03):
  • [3] Quantum-dot-based photonic devices
    Sugawara, Mitsuru
    Yamamoto, Tsuyoshi
    Ebe, Hiroji
    FUJITSU SCIENTIFIC & TECHNICAL JOURNAL, 2007, 43 (04): : 495 - 501
  • [4] Quantum-dot-based photonic devices
    Fujitsu Laboratories Ltd.
    不详
    不详
    不详
    不详
    Fujitsu Sci Tech J, 2007, 4 (495-501):
  • [5] Advances in Quantum-Dot-Based Displays
    Huang, Yu-Ming
    Singh, Konthoujam James
    Liu, An-Chen
    Lin, Chien-Chung
    Chen, Zhong
    Wang, Kai
    Lin, Yue
    Liu, Zhaojun
    Wu, Tingzhu
    Kuo, Hao-Chung
    NANOMATERIALS, 2020, 10 (07) : 1 - 29
  • [6] Coherently driven semiconductor quantum dot at a telecommunication wavelength
    Takagi, Hiroyuki
    Nakaoka, Toshihiro
    Watanabe, Katsuyuki
    Kumagai, Naoto
    Arakawa, Yasuhiko
    OPTICS EXPRESS, 2008, 16 (18): : 13949 - 13954
  • [7] Compact quantum-dot-based ultrafast lasers
    Sibbett, W.
    Rafailov, E. U.
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XVI, 2008, 6889
  • [8] Quantum-Dot-Based Resonant Exchange Qubit
    Medford, J.
    Beil, J.
    Taylor, J. M.
    Rashba, E. I.
    Lu, H.
    Gossard, A. C.
    Marcus, C. M.
    PHYSICAL REVIEW LETTERS, 2013, 111 (05)
  • [9] Telecom-Wavelength Quantum Relay Using a Semiconductor Quantum Dot
    Huwer, J.
    Felle, M.
    Stevenson, R. M.
    Skiba-Szymanska, J.
    Ward, M. B.
    Farrer, I.
    Penty, R. V.
    Ritchie, D. A.
    Shields, A. J.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [10] Entanglement distribution for a practical quantum-dot-based quantum processor architecture
    Spiller, Timothy P.
    D'Amico, Irene
    Lovett, Brendon W.
    NEW JOURNAL OF PHYSICS, 2007, 9