n-Algebras admitting a multiplicative basis

被引:0
|
作者
Calderon Martin, Antonio J. [1 ]
Navarro Izquierdo, Francisco J. [1 ]
Sanchez Delgado, Jose M. [1 ]
机构
[1] Univ Cadiz, Dept Math, Fac Sci, Campus Puerto Real, Cadiz 11510, Spain
关键词
n-Algebra; multiplicative basis; structure theory; LIE-ALGEBRAS; LEIBNIZ; BASES;
D O I
10.1142/S0219498818500251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (A, <., ..., .>) be an n-algebra of arbitrary dimension and over an arbitrary base field F. A basis B = {e(i)}(i is an element of I) of A is said to be multiplicative if for any i(1), ..., i(n) is an element of I, we have either < e(i1), ..., e(in)> = 0 or 0 not equal < e(i1), ..., e(in)> is an element of Fe-j for some (unique) j is an element of I. If n = 2, we are dealing with algebras admitting a multiplicative basis while if n = 3 we are speaking about triple systems with multiplicative bases. We show that if A admits a multiplicative basis then it decomposes as the orthogonal direct sum A = circle plus(alpha) I-alpha, of well-described ideals admitting each one a multiplicative basis. Also, the minimality of A is characterized in terms of the multiplicative basis and it is shown that, under a mild condition, the above direct sum is by means of the family of its minimal ideals.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Hopf structure in Nambu-Lie n-algebras
    Muradian, R
    Santana, AE
    THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 114 (01) : 67 - 72
  • [42] HOMOLOGY AND CENTRAL EXTENSIONS OF LEIBNIZ AND LIE n-ALGEBRAS
    Manuel Casas, Jose
    Khmaladze, Emzar
    Ladra, Manuel
    Van der Linden, Tim
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2011, 13 (01) : 59 - 74
  • [43] k-Modules Over Linear Spaces by n-Linear Maps Admitting a Multiplicative Basis
    Barreiro, Elisabete
    Kaygorodov, Ivan
    Sanchez, Jose M.
    ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (03) : 615 - 626
  • [44] k-Modules Over Linear Spaces by n-Linear Maps Admitting a Multiplicative Basis
    Elisabete Barreiro
    Ivan Kaygorodov
    José M. Sánchez
    Algebras and Representation Theory, 2019, 22 : 615 - 626
  • [45] Lie n-algebras and cohomologies of relative Rota-Baxter operators on n-Lie algebras
    Chen, Ming
    Liu, Jiefeng
    Ma, Yao
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 187
  • [46] Universal α-central extensions of Hom-Leibniz n-algebras
    Casas, J. M.
    Pacheco Rego, N.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (12): : 2468 - 2486
  • [47] Some radicals, Frattini and Cartan subalgebras of Leibniz n-algebras
    Gago, F.
    Ladra, M.
    Omirov, B. A.
    Turdibaev, R. M.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (11): : 1510 - 1527
  • [48] COMMENTS TO "FILIPPOV-NAMBU n-ALGEBRAS RELEVANT TO PHYSICS"
    Pletnev, N. G.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2011, 8 : 53 - 53
  • [49] FORMAL POWER-SERIES OVER COMMUTATIVE N-ALGEBRAS
    BEHRENS, EA
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (01): : 66 - 84
  • [50] Poincare'-Birkhoff-Witt theorem for Leibniz n-algebras
    Casas, Jose Manuel
    Insua, Manuel A.
    Ladra, Manuel
    JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (11-12) : 1052 - 1065