n-Algebras admitting a multiplicative basis

被引:0
|
作者
Calderon Martin, Antonio J. [1 ]
Navarro Izquierdo, Francisco J. [1 ]
Sanchez Delgado, Jose M. [1 ]
机构
[1] Univ Cadiz, Dept Math, Fac Sci, Campus Puerto Real, Cadiz 11510, Spain
关键词
n-Algebra; multiplicative basis; structure theory; LIE-ALGEBRAS; LEIBNIZ; BASES;
D O I
10.1142/S0219498818500251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (A, <., ..., .>) be an n-algebra of arbitrary dimension and over an arbitrary base field F. A basis B = {e(i)}(i is an element of I) of A is said to be multiplicative if for any i(1), ..., i(n) is an element of I, we have either < e(i1), ..., e(in)> = 0 or 0 not equal < e(i1), ..., e(in)> is an element of Fe-j for some (unique) j is an element of I. If n = 2, we are dealing with algebras admitting a multiplicative basis while if n = 3 we are speaking about triple systems with multiplicative bases. We show that if A admits a multiplicative basis then it decomposes as the orthogonal direct sum A = circle plus(alpha) I-alpha, of well-described ideals admitting each one a multiplicative basis. Also, the minimality of A is characterized in terms of the multiplicative basis and it is shown that, under a mild condition, the above direct sum is by means of the family of its minimal ideals.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Lie n-algebras of BPS charges
    Hisham Sati
    Urs Schreiber
    Journal of High Energy Physics, 2017
  • [22] The structure of Leibniz superalgebras admitting a multiplicative basis
    Albuquerque, Helena
    Barreiro, Elisabete
    Martin, Antonio J. Calderon
    Delgado, Jose M. Sanchez
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 110 : 259 - 268
  • [23] Leibniz triple systems admitting a multiplicative basis
    Albuquerque, Helena
    Barreiro, Elisabete
    Calderon, A. J.
    Sanchez-Delgado, Jose M.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) : 430 - 440
  • [24] Multivalued groups and Hopf n-algebras
    Bukhshtaber, VM
    Rees, EG
    RUSSIAN MATHEMATICAL SURVEYS, 1996, 51 (04) : 727 - 729
  • [25] CARTAN SUBALGEBRAS OF LEIBNIZ n-ALGEBRAS
    Albeverio, S.
    Ayupov, Sh. A.
    Omirov, B. A.
    Turdibaev, R. M.
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) : 2080 - 2096
  • [26] Homology with coefficients of Leibniz n-algebras
    Manuel Casas, Jose
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) : 595 - 598
  • [27] Arbitrary algebras with a multiplicative basis
    Calderon Martin, Antonio J.
    Navarro Izquierdo, Francisco J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 498 : 106 - 116
  • [28] Homology with trivial coefficients of Leibniz n-algebras
    Casas, JM
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (03) : 1377 - 1386
  • [29] Ganea term for homology of Leibniz n-algebras
    Casas, JM
    ALGEBRA COLLOQUIUM, 2005, 12 (04) : 629 - 634
  • [30] Weyl n-algebras and the Kontsevich integral of the unknot
    Markarian, Nikita
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2016, 25 (12)