n-Algebras admitting a multiplicative basis

被引:0
|
作者
Calderon Martin, Antonio J. [1 ]
Navarro Izquierdo, Francisco J. [1 ]
Sanchez Delgado, Jose M. [1 ]
机构
[1] Univ Cadiz, Dept Math, Fac Sci, Campus Puerto Real, Cadiz 11510, Spain
关键词
n-Algebra; multiplicative basis; structure theory; LIE-ALGEBRAS; LEIBNIZ; BASES;
D O I
10.1142/S0219498818500251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (A, <., ..., .>) be an n-algebra of arbitrary dimension and over an arbitrary base field F. A basis B = {e(i)}(i is an element of I) of A is said to be multiplicative if for any i(1), ..., i(n) is an element of I, we have either < e(i1), ..., e(in)> = 0 or 0 not equal < e(i1), ..., e(in)> is an element of Fe-j for some (unique) j is an element of I. If n = 2, we are dealing with algebras admitting a multiplicative basis while if n = 3 we are speaking about triple systems with multiplicative bases. We show that if A admits a multiplicative basis then it decomposes as the orthogonal direct sum A = circle plus(alpha) I-alpha, of well-described ideals admitting each one a multiplicative basis. Also, the minimality of A is characterized in terms of the multiplicative basis and it is shown that, under a mild condition, the above direct sum is by means of the family of its minimal ideals.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Lie-isoclinism in Leibniz n-algebras
    Safa, Hesam
    Biyogmam, Guy R.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 774 - 788
  • [32] Weyl n-algebras and the Swiss cheese operad
    Markarian, Nikita
    FORUM MATHEMATICUM, 2021, 33 (02) : 531 - 545
  • [33] On Lie-isoclinic extensions of Leibniz n-algebras
    Safa, Hesam
    Biyogmam, Guy R.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02): : 603 - 612
  • [34] On a filtered multiplicative basis of group algebras
    Bovdi, V
    ARCHIV DER MATHEMATIK, 2000, 74 (02) : 81 - 88
  • [35] FILIPPOV-NAMBU n-ALGEBRAS RELEVANT TO PHYSICS
    Pletnev, N. G.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2009, 6 : 272 - 311
  • [36] On a filtered multiplicative basis of group algebras
    V. Bovdi
    Archiv der Mathematik, 2000, 74 : 81 - 88
  • [37] (ANTI)COMMUTATIVE ALGEBRAS WITH A MULTIPLICATIVE BASIS
    Calderon Martin, Antonio J.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (02) : 211 - 218
  • [38] Higher Hopf formula for homology of Leibniz n-algebras
    Casas, J. M.
    Khmaladze, E.
    Ladrac, M.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (06) : 797 - 808
  • [39] Framed ??n-algebras from quantum field theory
    Elliott, Chris
    Gwilliam, Owen
    REVIEWS IN MATHEMATICAL PHYSICS, 2023, 35 (07)
  • [40] The Schur multiplier and stem covers of Leibniz n-algebras
    Manuel Casas, Jose
    Avelino Insua, Manuel
    Pacheco Rego, Natalia
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 95 (3-4): : 437 - 468