Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces

被引:31
|
作者
Solanes, G [1 ]
机构
[1] Univ Stuttgart, Inst Geometrie & Topol, D-70569 Stuttgart, Germany
关键词
integral geometry; total curvature;
D O I
10.1090/S0002-9947-05-03828-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an integral-geometric proof of the Gauss-Bonnet theorem for hypersurfaces in constant curvature spaces. As a tool, we obtain variation formulas in integral geometry with interest in its own.
引用
收藏
页码:1105 / 1115
页数:11
相关论文
共 50 条
  • [31] Area and Gauss-Bonnet inequalities with scalar curvature
    Gromov, Misha
    Zhu, Jintian
    COMMENTARII MATHEMATICI HELVETICI, 2024, 99 (01) : 355 - 395
  • [32] Manifolds with positive second gauss-bonnet curvature
    Labbi, Mohammed-Larbi
    PACIFIC JOURNAL OF MATHEMATICS, 2006, 227 (02) : 295 - 310
  • [33] Graph Characteristic from the Gauss-Bonnet Theorem
    ElGhawalby, Hewayda
    Hancock, Edwin R.
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2008, 5342 : 207 - 216
  • [34] Hawking radiation via Gauss-Bonnet theorem
    Ovgun, A.
    Sakalli, I
    ANNALS OF PHYSICS, 2020, 413
  • [35] Extended Gauss-Bonnet gravities in Weyl geometry
    Jimenez, Jose Beltran
    Koivisto, Tomi S.
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (13)
  • [36] Applications of the Gauss-Bonnet theorem to gravitational lensing
    Gibbons, G. W.
    Werner, M. C.
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (23)
  • [37] Generalized Noether theorem for Gauss-Bonnet cosmology
    Dong, Han
    CHINESE JOURNAL OF PHYSICS, 2019, 60 : 573 - 580
  • [38] Integral geometry in constant curvature Lorentz spaces
    Gil Solanes
    Eberhard Teufel
    manuscripta mathematica, 2005, 118 : 411 - 423
  • [39] Gauss-Bonnet inflation with a constant rate of roll
    Gao, Tie-Jun
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (11):
  • [40] Gauss-Bonnet models with cosmological constant and non zero spatial curvature in D=4
    Manuel Armaleo, Juan
    Osorio Morales, Juliana
    Santillan, Osvaldo P.
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (02):