Graph Characteristic from the Gauss-Bonnet Theorem

被引:0
|
作者
ElGhawalby, Hewayda [1 ]
Hancock, Edwin R. [1 ]
机构
[1] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
关键词
Manifold embedding; Heat kernel; Hausdorff distance; Gaussian curvature; Graph matching;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we explore how to characterise graphs using the Gauss-Bonnet theorem. Using the Gaussian curvatures estimated from first-order cycles we compute a global estimate of the Euler index using the Gauss-Bonnet theorem. We commence by embedding the nodes of a graph in a manifold using the heat-kernel mapping. From this mapping we are able to compute the geodesic and Euclidean distance between nodes, and these can be used to estimate the sectional curvatures of edges. Assuming that edges reside on hyper-spheres, we use Gauss's theorem to estimate the Gaussian curvature from the interior angles of geodesic triangles formed by first-order cycles in the graph. From the Gaussian curvatures we make a global estimate of the Euler index of the manifold using the Gauss-Bonnet theorem. Experiments show how the Gaussian curvatures and the Euler characteristics can be used to cluster Delaunay triangulations extracted from real world images.
引用
收藏
页码:207 / 216
页数:10
相关论文
共 50 条
  • [1] ON GAUSS-BONNET THEOREM
    Jaric, Jovo
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2012, 91 (105): : 59 - 62
  • [2] THE GAUSS-BONNET THEOREM
    Raghunathan, M. S.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (06): : 893 - 900
  • [3] The Gauss-Bonnet theorem
    M. S. Raghunathan
    Indian Journal of Pure and Applied Mathematics, 2015, 46 : 893 - 900
  • [4] Cubes, cones and the Gauss-Bonnet theorem
    Ridley, J. N.
    MATHEMATICAL GAZETTE, 2021, 105 (562): : 148 - 153
  • [5] A discrete Gauss-Bonnet type theorem
    Knill, Oliver
    ELEMENTE DER MATHEMATIK, 2012, 67 (01) : 1 - 17
  • [6] GLOBAL VERSION OF GAUSS-BONNET THEOREM
    SVEC, A
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1975, 25 (04) : 638 - 644
  • [7] GAUSS-BONNET THEOREM - PRELIMINARY REPORT
    TING, WL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A595 - &
  • [8] The Gauss-Bonnet theorem for Riemannian polyhedra
    Allendoerfer, Carl B.
    Weil, Andre
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 53 (1-3) : 101 - 129
  • [9] Historical development of the Gauss-Bonnet theorem
    Hung-Hsi Wu
    Science in China Series A: Mathematics, 2008, 51 : 777 - 784
  • [10] Application of Gauss-Bonnet theorem to geodesy
    Kizilsu, G
    JOURNAL OF SURVEYING ENGINEERING-ASCE, 2002, 128 (03): : 125 - 135