Gauss-Bonnet curvature;
Einstein manifold;
surgery;
D O I:
10.2140/pjm.2006.227.295
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The second Gauss-Bonnet curvature of a Riemannian manifold, denoted h(4), is a generalization of the four-dimensional Gauss-Bonnet integrand to higher dimensions. It coincides with the second curvature invariant, which appears in the well known Weyl's tube formula. A crucial property of h(4) is that it is nonnegative for Einstein manifolds; hence it provides, independently of the sign of the Einstein constant, a geometric obstruction to the existence of Einstein metrics in dimensions >= 4. This motivates our study of the positivity of this invariant. We show that positive sectional curvature implies the positivity of h(4), and so does positive isotropic curvature in dimensions >= 8. Also, we prove many constructions of metrics with positive second Gauss-Bonnet curvature that generalize similar well known results for the scalar curvature.
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
机构:
Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, SpainUniv Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
Barahona, S.
Gual-Arnau, X.
论文数: 0|引用数: 0|
h-index: 0|
机构:
Univ Jaume 1, Dept Matemat, Inst New Imaging Technol, Castellon de La Plana 12071, SpainUniv Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain