Boundary conditions and amplitude ratios for finite-size corrections of a one-dimensional quantum spin model

被引:23
|
作者
Izmailian, N. Sh. [1 ,2 ,3 ,4 ]
Hu, Chin-Kum [2 ,5 ,6 ]
机构
[1] Yerevan Phys Inst, Yerevan 375036, Armenia
[2] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[3] Yerevan State Univ, Int Ctr Adv Study, Yerevan 375025, Armenia
[4] Natl Taiwan Univ, Div Phys, Natl Ctr Theoret Sci Taipei, Taipei 10617, Taiwan
[5] Chung Yuan Christian Univ, Ctr Nonlinear & Complex Syst, Chungli 320, Taiwan
[6] Chung Yuan Christian Univ, Dept Phys, Chungli 320, Taiwan
关键词
UNIVERSAL SCALING FUNCTIONS; RENORMALIZATION-GROUP METHOD; BOND-CORRELATED PERCOLATION; 2-DIMENSIONAL ISING-MODEL; HARD-CORE PARTICLES; MONTE-CARLO; STATISTICAL-MECHANICS; PHASE-TRANSITIONS; OPERATOR CONTENT; CENTRAL CHARGE;
D O I
10.1016/j.nuclphysb.2008.09.009
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the influence of boundary conditions on the finite-size corrections of a one-dimensional (I D) quantum spin model by exact and perturbative theoretic calculations. We obtain two new infinite sets of universal amplitude ratios for the finite-size correction terms of the I D quantum spin model of N sites with free and antiperiodic boundary conditions. The results for the lowest two orders are in perfect agreement with a perturbative conformal field theory scenario proposed by Cardy [J. Cardy, Nucl. Phys. B 270 (1986) 186]. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:613 / 624
页数:12
相关论文
共 50 条
  • [31] Matrix product state approach to the finite-size scaling properties of the one-dimensional critical quantum Ising model
    Sung-Been Park
    Min-Chul Cha
    Journal of the Korean Physical Society, 2015, 67 : 1619 - 1623
  • [32] Suppression of finite-size effects in one-dimensional correlated systems
    Gendiar, A.
    Daniska, M.
    Lee, Y.
    Nishino, T.
    PHYSICAL REVIEW A, 2011, 83 (05):
  • [33] INFLUENCE OF A COLLISION TERM ON FINITE-SIZE ONE-DIMENSIONAL TDHF
    GRANGE, P
    RICHERT, J
    WOLSCHIN, G
    WEIDENMULLER, HA
    NUCLEAR PHYSICS A, 1981, 356 (01) : 260 - 268
  • [34] Finite-size effects in one-dimensional strained semiconductor heterostructures
    DeCaro, L
    Tapfer, L
    PHYSICAL REVIEW B, 1996, 54 (15) : 10575 - 10584
  • [35] FINITE-SIZE STUDY OF THE ONE-DIMENSIONAL SPIN-1/2 DIMERIZED HEISENBERG CHAIN
    SPRONKEN, G
    FOURCADE, B
    LEPINE, Y
    PHYSICAL REVIEW B, 1986, 33 (03): : 1886 - 1903
  • [36] CORRECTIONS TO FINITE-SIZE SCALING FOR QUANTUM CHAINS
    GEHLEN, GV
    HOEGER, C
    RITTENBERG, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (09): : L469 - L472
  • [37] FERMI-SURFACE OF THE ONE-DIMENSIONAL HUBBARD-MODEL - FINITE-SIZE EFFECTS
    BOURBONNAIS, C
    NELISSE, H
    REID, A
    TREMBLAY, AMS
    PHYSICA C, 1989, 162 : 805 - 806
  • [38] Finite-size scaling of correlation functions in the one-dimensional Anderson-Hubbard model
    Nishimoto, Satoshi
    Shirakawa, Tomonori
    PHYSICAL REVIEW B, 2010, 81 (11):
  • [39] Finite-size Scaling Properties of the One-dimensional Extended Bose-Hubbard Model
    Shin, Jong-Geun
    Cha, Min-Chul
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 56 (03) : 986 - 989
  • [40] FINITE-SIZE EFFECTS IN CONFORMAL THEORIES AND THE NONLOCAL OPERATORS IN ONE-DIMENSIONAL QUANTUM-SYSTEMS
    ZABRODIN, AV
    MIRONOV, AD
    JETP LETTERS, 1989, 50 (05) : 241 - 244