Suppression of finite-size effects in one-dimensional correlated systems

被引:31
|
作者
Gendiar, A. [1 ,2 ,3 ]
Daniska, M. [1 ,4 ]
Lee, Y. [1 ,3 ]
Nishino, T. [3 ]
机构
[1] Slovak Acad Sci, Inst Phys, SK-84511 Bratislava, Slovakia
[2] Slovak Acad Sci, Inst Elect Engn, SK-84104 Bratislava, Slovakia
[3] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Hyogo 6578501, Japan
[4] Comenius Univ, Fac Math Phys & Informat, Dept Nucl Phys & Biophys, SK-84248 Bratislava, Slovakia
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 05期
关键词
D O I
10.1103/PhysRevA.83.052118
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the effect of a nonuniform deformation applied to one-dimensional (1D) quantum systems, where the local energy scale is proportional to g(j) = [sin(j pi/N)](m) determined by a positive integer m, site index 1 <= j <= N - 1, and system size N. This deformation introduces a smooth boundary to systems with open-boundary conditions. When m >= 2, the leading 1/N correction to the ground-state energy per bond e(0)((N)) vanishes and one is left with a 1/N-2 correction, the same as with periodic boundary conditions. In particular, when m = 2, the value of e(0)((N)) obtained from the deformed open-boundary system coincides with the uniform system with periodic boundary conditions. We confirm the fact numerically for correlated systems, such as the extended Hubbard model, in addition to 1D free-fermion models.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [1] Finite-Size Effects of the One-Dimensional Ising Model
    Ferreira, L. S.
    Plascak, J. A.
    BRAZILIAN JOURNAL OF PHYSICS, 2023, 53 (03)
  • [2] Finite-Size Effects of the One-Dimensional Ising Model
    L. S. Ferreira
    J. A. Plascak
    Brazilian Journal of Physics, 2023, 53
  • [3] Finite-size effects on topological interface states in one-dimensional scattering systems
    Kalozoumis, P. A.
    Theocharis, G.
    Achilleos, V.
    Felix, S.
    Richoux, O.
    Pagneux, V.
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [4] Finite-size effects in one-dimensional strained semiconductor heterostructures
    DeCaro, L
    Tapfer, L
    PHYSICAL REVIEW B, 1996, 54 (15) : 10575 - 10584
  • [5] Anderson impurity in the one-dimensional Hubbard model for finite-size systems
    Costamagna, S.
    Gazza, C. J.
    Torio, M. E.
    Riera, J. A.
    PHYSICAL REVIEW B, 2006, 74 (19)
  • [6] ARITHMETICAL FINITE-SIZE CORRECTIONS IN ONE-DIMENSIONAL QUANTUM-SYSTEMS
    AUDIT, P
    TRUONG, TT
    PHYSICS LETTERS A, 1990, 145 (6-7) : 309 - 313
  • [7] Wave transport in one-dimensional disordered systems with finite-size scatterers
    Diaz, Marlos
    Mello, Pier A.
    Yepez, Miztli
    Tomsovic, Steven
    PHYSICAL REVIEW B, 2015, 91 (18)
  • [9] Spin correlations and finite-size effects in the one-dimensional Kondo box
    Hand, Thomas
    Kroha, Johann
    Monien, Hartmut
    PHYSICAL REVIEW LETTERS, 2006, 97 (13)
  • [10] Finite-size effects and thermodynamic limit in one-dimensional Janus fluids
    Fantoni, R.
    Maestre, M. A. G.
    Santos, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (10):