Suppression of finite-size effects in one-dimensional correlated systems

被引:31
|
作者
Gendiar, A. [1 ,2 ,3 ]
Daniska, M. [1 ,4 ]
Lee, Y. [1 ,3 ]
Nishino, T. [3 ]
机构
[1] Slovak Acad Sci, Inst Phys, SK-84511 Bratislava, Slovakia
[2] Slovak Acad Sci, Inst Elect Engn, SK-84104 Bratislava, Slovakia
[3] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Hyogo 6578501, Japan
[4] Comenius Univ, Fac Math Phys & Informat, Dept Nucl Phys & Biophys, SK-84248 Bratislava, Slovakia
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 05期
关键词
D O I
10.1103/PhysRevA.83.052118
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the effect of a nonuniform deformation applied to one-dimensional (1D) quantum systems, where the local energy scale is proportional to g(j) = [sin(j pi/N)](m) determined by a positive integer m, site index 1 <= j <= N - 1, and system size N. This deformation introduces a smooth boundary to systems with open-boundary conditions. When m >= 2, the leading 1/N correction to the ground-state energy per bond e(0)((N)) vanishes and one is left with a 1/N-2 correction, the same as with periodic boundary conditions. In particular, when m = 2, the value of e(0)((N)) obtained from the deformed open-boundary system coincides with the uniform system with periodic boundary conditions. We confirm the fact numerically for correlated systems, such as the extended Hubbard model, in addition to 1D free-fermion models.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [21] INFLUENCE OF A COLLISION TERM ON FINITE-SIZE ONE-DIMENSIONAL TDHF
    GRANGE, P
    RICHERT, J
    WOLSCHIN, G
    WEIDENMULLER, HA
    NUCLEAR PHYSICS A, 1981, 356 (01) : 260 - 268
  • [22] Universality of finite-size corrections to geometrical entanglement in one-dimensional quantum critical systems
    Xi-Jing Liu
    Bing-Quan Hu
    Sam Young Cho
    Huan-Qiang Zhou
    Qian-Qian Shi
    Journal of the Korean Physical Society, 2016, 69 : 1212 - 1218
  • [23] FINITE-SIZE SCALING AND SURFACE-TENSION FROM EFFECTIVE ONE-DIMENSIONAL SYSTEMS
    BORGS, C
    IMBRIE, JZ
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (02) : 235 - 280
  • [24] Universality of finite-size corrections to geometrical entanglement in one-dimensional quantum critical systems
    Liu, Xi-Jing
    Hu, Bing-Quan
    Cho, Sam Young
    Zhou, Huan-Qiang
    Shi, Qian-Qian
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2016, 69 (07) : 1212 - 1218
  • [25] FERMI-SURFACE OF THE ONE-DIMENSIONAL HUBBARD-MODEL - FINITE-SIZE EFFECTS
    BOURBONNAIS, C
    NELISSE, H
    REID, A
    TREMBLAY, AMS
    PHYSICA C, 1989, 162 : 805 - 806
  • [26] Finite-size effects in Anderson localization of one-dimensional Bose-Einstein condensates
    Cestari, J. C. C.
    Foerster, A.
    Gusmao, M. A.
    PHYSICAL REVIEW A, 2010, 82 (06):
  • [27] Finite-size effects from higher conservation laws for the one-dimensional Bose gas
    Eriksson, Erik
    Korepin, Vladimir
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (23)
  • [28] Predicting and identifying finite-size effects in current spectra of one-dimensional oscillator chains
    Lee-Dadswell, G. R.
    PHYSICAL REVIEW E, 2015, 91 (01):
  • [29] A FINITE-SIZE SCALING ANALYSIS OF THE LOCALIZATION PROPERTIES OF ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    HASHIMOTO, Y
    NIIZEKI, K
    OKABE, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (20): : 5211 - 5221
  • [30] Finite-size scaling of entanglement entropy in one-dimensional topological models
    Wang, Yuting
    Gulden, Tobias
    Kamenev, Alex
    PHYSICAL REVIEW B, 2017, 95 (07)