Suppression of finite-size effects in one-dimensional correlated systems

被引:31
|
作者
Gendiar, A. [1 ,2 ,3 ]
Daniska, M. [1 ,4 ]
Lee, Y. [1 ,3 ]
Nishino, T. [3 ]
机构
[1] Slovak Acad Sci, Inst Phys, SK-84511 Bratislava, Slovakia
[2] Slovak Acad Sci, Inst Elect Engn, SK-84104 Bratislava, Slovakia
[3] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Hyogo 6578501, Japan
[4] Comenius Univ, Fac Math Phys & Informat, Dept Nucl Phys & Biophys, SK-84248 Bratislava, Slovakia
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 05期
关键词
D O I
10.1103/PhysRevA.83.052118
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the effect of a nonuniform deformation applied to one-dimensional (1D) quantum systems, where the local energy scale is proportional to g(j) = [sin(j pi/N)](m) determined by a positive integer m, site index 1 <= j <= N - 1, and system size N. This deformation introduces a smooth boundary to systems with open-boundary conditions. When m >= 2, the leading 1/N correction to the ground-state energy per bond e(0)((N)) vanishes and one is left with a 1/N-2 correction, the same as with periodic boundary conditions. In particular, when m = 2, the value of e(0)((N)) obtained from the deformed open-boundary system coincides with the uniform system with periodic boundary conditions. We confirm the fact numerically for correlated systems, such as the extended Hubbard model, in addition to 1D free-fermion models.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] FINITE-SIZE SCALING IN ONE-DIMENSIONAL QUANTUM LIQUID WITH LONG-RANGE INTERACTION
    KAWAKAMI, N
    YANG, SK
    PHYSICAL REVIEW LETTERS, 1991, 67 (18) : 2493 - 2496
  • [42] Finite-size scaling of correlation functions in the one-dimensional Anderson-Hubbard model
    Nishimoto, Satoshi
    Shirakawa, Tomonori
    PHYSICAL REVIEW B, 2010, 81 (11):
  • [43] One-dimensional Ising model for spin systems of finite size
    Altenberger, AR
    Dahler, JS
    ADVANCES IN CHEMICAL PHYSICS, VOL 112, 2000, 112 : 337 - 356
  • [44] Finite-size Scaling Properties of the One-dimensional Extended Bose-Hubbard Model
    Shin, Jong-Geun
    Cha, Min-Chul
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 56 (03) : 986 - 989
  • [45] Coulomb finite-size effects in quasi-two-dimensional systems
    Wood, B
    Foulkes, WMC
    Towler, MD
    Drummond, ND
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (06) : 891 - 902
  • [46] Block entanglement and fluctuations in finite-size correlated electron systems
    Purkayastha, Archak
    Subrahmanyam, V.
    PHYSICAL REVIEW B, 2014, 89 (19)
  • [47] On Scattering of Finite-Size and Finite-Volume One-dimensional Photonic Crystal Resonator Tag for THz Identification
    Abbas, Ali Alhaj
    Zantah, Yamen
    Kaiser, Thomas
    2022 FIFTH INTERNATIONAL WORKSHOP ON MOBILE TERAHERTZ SYSTEMS (IWMTS), 2022,
  • [48] FINITE-SIZE STUDIES OF PHASES AND DIMERIZATION IN ONE-DIMENSIONAL EXTENDED PEIERLS-HUBBARD MODELS
    WAAS, V
    BUTTNER, H
    VOIT, J
    PHYSICAL REVIEW B, 1990, 41 (13): : 9366 - 9376
  • [49] Basic characteristics of one-dimensional finite-size photonic crystals containing amplifying or absorbing layers
    Kozina, ON
    Mel'nikov, LA
    LASER PHYSICS, 2004, 14 (05) : 727 - 732
  • [50] FINITE-SIZE STUDY OF THE ONE-DIMENSIONAL SPIN-1/2 DIMERIZED HEISENBERG CHAIN
    SPRONKEN, G
    FOURCADE, B
    LEPINE, Y
    PHYSICAL REVIEW B, 1986, 33 (03): : 1886 - 1903