Boundary conditions and amplitude ratios for finite-size corrections of a one-dimensional quantum spin model

被引:23
|
作者
Izmailian, N. Sh. [1 ,2 ,3 ,4 ]
Hu, Chin-Kum [2 ,5 ,6 ]
机构
[1] Yerevan Phys Inst, Yerevan 375036, Armenia
[2] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[3] Yerevan State Univ, Int Ctr Adv Study, Yerevan 375025, Armenia
[4] Natl Taiwan Univ, Div Phys, Natl Ctr Theoret Sci Taipei, Taipei 10617, Taiwan
[5] Chung Yuan Christian Univ, Ctr Nonlinear & Complex Syst, Chungli 320, Taiwan
[6] Chung Yuan Christian Univ, Dept Phys, Chungli 320, Taiwan
关键词
UNIVERSAL SCALING FUNCTIONS; RENORMALIZATION-GROUP METHOD; BOND-CORRELATED PERCOLATION; 2-DIMENSIONAL ISING-MODEL; HARD-CORE PARTICLES; MONTE-CARLO; STATISTICAL-MECHANICS; PHASE-TRANSITIONS; OPERATOR CONTENT; CENTRAL CHARGE;
D O I
10.1016/j.nuclphysb.2008.09.009
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the influence of boundary conditions on the finite-size corrections of a one-dimensional (I D) quantum spin model by exact and perturbative theoretic calculations. We obtain two new infinite sets of universal amplitude ratios for the finite-size correction terms of the I D quantum spin model of N sites with free and antiperiodic boundary conditions. The results for the lowest two orders are in perfect agreement with a perturbative conformal field theory scenario proposed by Cardy [J. Cardy, Nucl. Phys. B 270 (1986) 186]. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:613 / 624
页数:12
相关论文
共 50 条
  • [21] Supercurrent states in one-dimensional finite-size rings
    Kashurnikov, VA
    Podlivaev, AI
    Prokofev, NV
    Svistunov, BV
    PHYSICAL REVIEW B, 1996, 53 (19): : 13091 - 13105
  • [22] Finite-size corrections in the XXZ model and the Hubbard model with boundary fields
    Asakawa, H
    Suzuki, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (02): : 225 - 245
  • [23] Finite-size corrections in the XXZ model and the Hubbard model with boundary fields
    Asakawa, H.
    Suzuki, M.
    Journal of Physics A: Mathematical and General,
  • [24] Quartic multifractality and finite-size corrections at the spin quantum Hall transition
    Puschmann, Martin
    Hernangomez-Perez, Daniel
    Lang, Bruno
    Bera, Soumya
    Evers, Ferdinand
    PHYSICAL REVIEW B, 2021, 103 (23)
  • [25] Finite-size effects for the gap in the excitation spectrum of the one-dimensional Hubbard model
    Colome-Tatche, M.
    Matveenko, S. I.
    Shlyapnikov, G. V.
    PHYSICAL REVIEW A, 2010, 81 (01):
  • [26] FINITE-SIZE SCALING IN ONE-DIMENSIONAL QUANTUM LIQUID WITH LONG-RANGE INTERACTION
    KAWAKAMI, N
    YANG, SK
    PHYSICAL REVIEW LETTERS, 1991, 67 (18) : 2493 - 2496
  • [27] FINITE-SIZE ANALYSIS OF THE STRUCTURE FACTORS IN THE ONE-DIMENSIONAL SPIN-1/2 ANTIFERROMAGNETIC XXZ MODEL
    KARBACH, M
    MUTTER, KH
    SCHMIDT, M
    PHYSICAL REVIEW B, 1994, 50 (13) : 9281 - 9292
  • [28] Exact finite-size corrections for the spanning-tree model under different boundary conditions
    Izmailian, N. Sh.
    Kenna, R.
    PHYSICAL REVIEW E, 2015, 91 (02):
  • [29] NON-ANALYTIC FINITE-SIZE CORRECTIONS IN THE ONE-DIMENSIONAL BOSE-GAS AND HEISENBERG CHAIN
    WOYNAROVICH, F
    ECKLE, HP
    TRUONG, TT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18): : 4027 - 4043
  • [30] Matrix product state approach to the finite-size scaling properties of the one-dimensional critical quantum Ising model
    Park, Sung-Been
    Cha, Min-Chul
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 67 (09) : 1619 - 1623