Lp estimates for degenerate non-local Kolmogorov operators

被引:21
|
作者
Huang, L. [1 ]
Menozzi, S. [2 ,3 ]
Priola, E. [4 ]
机构
[1] INSA Toulouse, 135 Ave Rangueil, F-31077 Toulouse 04, France
[2] Univ Evry Val dEssonne, 23 Blvd France, F-91037 Evry, France
[3] Natl Res Univ, Higher Sch Econ, Shabolovka 31, Moscow, Russia
[4] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, Turin, Italy
基金
俄罗斯科学基金会;
关键词
Calderon-Zygmund estimates; Degenerate non-local operators; Stable processes; MAXIMAL REGULARITY; EQUATIONS; SPACES; DIFFUSION; DENSITIES; DRIVEN; L-2;
D O I
10.1016/j.matpur.2017.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let z = (x, y) is an element of R-d x RN-d , with 1 <= d <= N. We prove a priori estimates of the following type: parallel to Delta(alpha/2)(x) v parallel to(Lp(RN)) <= c(p)parallel to L(x)v + Sigma(N)(i,j=1) a(ij)z(i)partial derivative(zj) v parallel to(Lp(RN)), 1<p<infinity, for v is an element of C-0(infinity) (R-N), where L-x is a non-local operator comparable with the R-d-fractional Laplacian Delta(alpha/2)(x) in terms of symbols, alpha is an element of (0, 2). We require that when L-x is replaced by the classical R-d-Laplacian Delta(x), i.e., in the limit local case alpha = 2, the operator Delta(x)+ Sigma(N)(i,j=1) a(ij)z(i)partial derivative(zj), satisfy a weak type Hormander condition with invariance by suitable dilations. Such estimates were only known for alpha = 2. This is one of the first results on L-p estimates for degenerate non-local operators under Hormander type conditions. We complete our result on L-p-regularity for L-x + Sigma(N)(i,j=1) a(ij)z(i)partial derivative(zj), by proving estimates like parallel to Delta(alpha i/2)(yi) v parallel to(Lp(RN)) <= c(p)parallel to L(x)v + Sigma(N)(i,j=1) a(ij)z(i)partial derivative(zj) v parallel to(Lp(RN)), involving fractional Laplacians in the degenerate directions y(i) (here alpha(i )is an element of (0,1 Lambda alpha) depends on alpha and on the numbers of commutators needed to obtain the yi-direction). The last estimates are new even in the local limit case alpha = 2 which is also considered. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:162 / 215
页数:54
相关论文
共 50 条
  • [41] A REMARK ON NON-LOCAL OPERATORS WITH VARIABLE ORDER
    Uemura, Toshihiro
    OSAKA JOURNAL OF MATHEMATICS, 2009, 46 (02) : 503 - 514
  • [42] Generalized Hormander theorem for non-local operators
    Komatsu, T
    Takeuchi, A
    RECENT DEVELOPMENTS IN STOCHASTIC ANALYSIS AND RELATED TOPICS, 2004, : 234 - 245
  • [43] Harnack Inequality for Non-Local Schrodinger Operators
    Athreya, Siva
    Ramachandran, Koushik
    POTENTIAL ANALYSIS, 2018, 48 (04) : 515 - 551
  • [44] On a Class of Non-local Operators in Conformal Geometry
    Chang, Sun Yung Alice
    Yang, Ray A.
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 215 - 234
  • [45] The complement value problem for non-local operators
    Sun, Wei
    STOCHASTICS AND DYNAMICS, 2020, 20 (03)
  • [46] On a Class of Non-local Operators in Conformal Geometry
    Sun Yung Alice CHANG
    Ray A.YANG
    Chinese Annals of Mathematics,Series B, 2017, (01) : 215 - 234
  • [47] Non-local pseudo-differential operators
    Ishimura, R
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (12): : 1241 - 1276
  • [48] Spectral analysis of non-local Schrodinger operators
    Kondratiev, Yu.
    Molchanov, S.
    Vainberg, B.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (03) : 1020 - 1048
  • [49] On a class of non-local operators in conformal geometry
    Sun Yung Alice Chang
    Ray A. Yang
    Chinese Annals of Mathematics, Series B, 2017, 38 : 215 - 234
  • [50] On the Fuik spectrum of non-local elliptic operators
    Goyal, Sarika
    Sreenadh, K.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 21 (04): : 567 - 588