Spectral analysis of non-local Schrodinger operators

被引:12
|
作者
Kondratiev, Yu. [1 ]
Molchanov, S. [2 ,3 ]
Vainberg, B. [2 ]
机构
[1] Univ Bielefeld, Fak Math, D-33615 Bielefeld, Germany
[2] UNC Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
[3] Natl Res Univ, Higher Sch Econ, Moscow, Russia
基金
美国国家科学基金会;
关键词
Random walk; Spectrum; Front propagation; Population; MODEL;
D O I
10.1016/j.jfa.2017.04.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study spectral properties of convolution operators L and their perturbations H = L + v(x) by compactly supported potentials. Results are applied to determine the front propagation of a population density governed by operator H with a compactly supported initial density provided that H has positive eigenvalues. If there is no positive spectrum, then the stabilization of the population density is proved. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1020 / 1048
页数:29
相关论文
共 50 条
  • [1] Spectral and Analytic Properties of Non-Local Schrodinger Operators and Related Jump Processes
    Lorinczi, Jozsef
    Kaleta, Kamil
    Durugo, Samuel O.
    [J]. COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2015, 6 (02):
  • [2] Harnack Inequality for Non-Local Schrodinger Operators
    Athreya, Siva
    Ramachandran, Koushik
    [J]. POTENTIAL ANALYSIS, 2018, 48 (04) : 515 - 551
  • [3] Fundamental solutions of generalized non-local Schrodinger operators
    Do, Tan Duc
    [J]. ARKIV FOR MATEMATIK, 2022, 60 (01): : 43 - 66
  • [4] HIGHE RORDER EIGENVALUES FOR NON-LOCAL SCHRODINGER OPERATORS
    Jacob, Niels
    Wang, Feng-Yu
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (01) : 191 - 208
  • [5] Absence of embedded eigenvalues for non-local Schrodinger operators
    Ishida, Atsuhide
    Lorinczi, Jozsef
    Sasaki, Itaru
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (04)
  • [6] Potentials for non-local Schrodinger operators with zero eigenvalues
    Ascione, Giacomo
    Lorinczi, Jozsef
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 317 : 264 - 364
  • [7] Lp-independence of spectral bounds of Schrodinger-type operators with non-local potentials
    Tawara, Yoshihiro
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2010, 62 (03) : 767 - 788
  • [8] Heat kernels of non-local Schrodinger operators with Kato potentials
    Grzywny, Tomasz
    Kaleta, Kamil
    Sztonyk, Pawel
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 340 : 273 - 308
  • [9] Inverse spectral problem for the operators with non-local potential
    Zolotarev, Vladimir A.
    [J]. MATHEMATISCHE NACHRICHTEN, 2019, 292 (03) : 661 - 681
  • [10] Spectral Properties of the Discrete Schrodinger Operator with Non-Local Potential
    Muminov, Zahriddin
    Manaf, Nur'Azah Abdul
    Kuljanov, Utkir
    [J]. INNOVATIONS THROUGH MATHEMATICAL AND STATISTICAL RESEARCH: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS (ICMSS2016), 2016, 1739