HIGHE RORDER EIGENVALUES FOR NON-LOCAL SCHRODINGER OPERATORS

被引:8
|
作者
Jacob, Niels [1 ]
Wang, Feng-Yu [1 ,2 ]
机构
[1] Swansea Univ, Dept Math, Singleton Pk, Swansea SA2 8PP, W Glam, Wales
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
Eigenvalues; non-local Schrodinger operator; jump process; pseudo differential operator; intrinsic super Poincare inequality; SYMMETRIC JUMP-PROCESSES; FEYNMAN-KAC SEMIGROUPS; POTENTIAL-THEORY; INTRINSIC ULTRACONTRACTIVITY; FUNCTIONAL INEQUALITIES; SPECTRUM; EIGENFUNCTIONS; DOMAINS;
D O I
10.3934/cpaa.2018012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two-sided estimates for higher order eigenvalues are presented for a class of non-local Schrodinger operators by using the jump rate and the growth of the potential. For instance, let L be the generator of a Levy process with Levy measure v(dz) := rho(-z) dz such that rho(z) = rho(-z) and c(1) vertical bar z vertical bar(-(d+alpha 1)) <= rho(z) <= c(2) vertical bar z vertical bar(-(d+alpha 2)), vertical bar z vertical bar <= kappa for some constants kappa, c(1), c(2) > 0 and alpha(1), alpha(2) is an element of(0, 2); and let c(3) vertical bar x vertical bar(theta 1) <= V (x) <= c(1) vertical bar x vertical bar(theta 2) for some constants theta(1), theta(2), c(3), c(1) > 0 and large vertical bar x vertical bar. Then the eigenvalues lambda(1) <= lambda(2) center dot center dot center dot lambda(n) <= center dot center dot center dot of -L + V satisfies the following two-side estimate: there exists a constant C > 1 such that Cn theta(2)alpha(2/)/d(theta(2)+alpha(2)) >= lambda(n) >= C(-1)n theta(1)alpha(1)/d(theta(1)+alpha(1)), n >= 1. When alpha(1) is variable, a better lower bound estimate is derived.
引用
收藏
页码:191 / 208
页数:18
相关论文
共 50 条
  • [1] Potentials for non-local Schrodinger operators with zero eigenvalues
    Ascione, Giacomo
    Lorinczi, Jozsef
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 317 : 264 - 364
  • [2] Absence of embedded eigenvalues for non-local Schrodinger operators
    Ishida, Atsuhide
    Lorinczi, Jozsef
    Sasaki, Itaru
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (04)
  • [3] NEGATIVE EIGENVALUES OF NON-LOCAL SCHRoDINGER OPERATORS WITH SIGN-CHANGING POTENTIALS
    Molchanov, S.
    Vainberg, B.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023,
  • [4] NEGATIVE EIGENVALUES OF NON-LOCAL SCHRODINGER OPERATORS WITH SIGN-CHANGING POTENTIALS
    Molchanov, S.
    Vainberg, B.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (11) : 4757 - 4770
  • [5] Stability of ground state eigenvalues of non-local Schrodinger operators with respect to potentials and applications
    Ascione, Giacomo
    Lorinczi, Jozsef
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (02)
  • [6] Spectral analysis of non-local Schrodinger operators
    Kondratiev, Yu.
    Molchanov, S.
    Vainberg, B.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (03) : 1020 - 1048
  • [7] Harnack Inequality for Non-Local Schrodinger Operators
    Athreya, Siva
    Ramachandran, Koushik
    [J]. POTENTIAL ANALYSIS, 2018, 48 (04) : 515 - 551
  • [8] Fundamental solutions of generalized non-local Schrodinger operators
    Do, Tan Duc
    [J]. ARKIV FOR MATEMATIK, 2022, 60 (01): : 43 - 66
  • [9] Absence of embedded eigenvalues for non-local Schrödinger operators
    Atsuhide Ishida
    József Lőrinczi
    Itaru Sasaki
    [J]. Journal of Evolution Equations, 2022, 22
  • [10] Heat kernels of non-local Schrodinger operators with Kato potentials
    Grzywny, Tomasz
    Kaleta, Kamil
    Sztonyk, Pawel
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 340 : 273 - 308