The ordinal Kolmogorov-Sinai entropy: A generalized approximation

被引:14
|
作者
Fouda, J. S. Armand Eyebe [1 ]
Koepf, Wolfram [2 ]
Jacquir, Sabir [3 ]
机构
[1] Univ Yaounde I, Dept Phys, Fac Sci, POB 812, Yaounde, Cameroon
[2] Univ Kassel, Inst Math, Heinrich Plett Str 40, D-34132 Kassel, Germany
[3] Univ Bourgogne Franche Comte, CNRS, UMR 6306, LE2I,Arts & Metiers, F-21000 Dijon, France
关键词
Complexity; Entropy; Ordinal pattern; Ordinal array; QUASI-PERIODIC ROUTE; PERMUTATION ENTROPY; DISCRETE MAPS; CHAOS;
D O I
10.1016/j.cnsns.2016.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the multi-dimensional ordinal arrays complexity as a generalized approximation of the ordinal Komogorov-Sinai entropy. The ordinal arrays entropy (OAE) is defined as the Shannon entropy of a series of m-ordinal patterns encoded symbols, while the ordinal arrays complexity (OAC) is defined as the differential of the OAE with respect to m. We theoretically establish that the OAC provides a better estimate of the complexity measure for short length time series. Simulations were carried out using discrete maps, and confirm the efficiency of the OAC as complexity measure from a small data set even in a noisy environment. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 115
页数:13
相关论文
共 50 条
  • [21] Kolmogorov-Sinai entropy from recurrence times
    Baptista, M. S.
    Ngamga, E. J.
    Pinto, Paulo R. F.
    Brito, Margarida
    Kurths, J.
    PHYSICS LETTERS A, 2010, 374 (09) : 1135 - 1140
  • [22] Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate
    Bianchi, Eugenio
    Hackl, Lucas
    Yokomizo, Nelson
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
  • [23] Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate
    Eugenio Bianchi
    Lucas Hackl
    Nelson Yokomizo
    Journal of High Energy Physics, 2018
  • [24] RELATION BETWEEN DIVERGENCE OF TRAJECTORIES AND KOLMOGOROV-SINAI ENTROPY
    CASATI, G
    DIANA, E
    SCOTTI, A
    PHYSICS LETTERS A, 1976, 56 (01) : 5 - 6
  • [25] Holographic Kolmogorov-Sinai entropy and the quantum Lyapunov spectrum
    Maier, Georg
    Schaefer, Andreas
    Waeber, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
  • [26] Kolmogorov-Sinai entropy for p-preserving systems
    Khare, Mona
    Shukla, Anurag
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2018, 9 (01) : 37 - 53
  • [27] Entropy functionals of Kolmogorov-Sinai type and their limit theorems
    Muraki, N
    Ohya, M
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (03) : 327 - 335
  • [28] Holographic Kolmogorov-Sinai entropy and the quantum Lyapunov spectrum
    Georg Maier
    Andreas Schäfer
    Sebastian Waeber
    Journal of High Energy Physics, 2022
  • [29] Kolmogorov-Sinai entropy of the dilute wet granular gas
    Fingerle, A
    Herminghaus, S
    Zaburdaev, V
    PHYSICAL REVIEW LETTERS, 2005, 95 (19)
  • [30] Extensivity and additivity of the Kolmogorov-Sinai entropy for simple fluids
    Das, Moupriya
    Costa, Anthony B.
    Green, Jason R.
    PHYSICAL REVIEW E, 2017, 95 (02)