The ordinal Kolmogorov-Sinai entropy: A generalized approximation

被引:14
|
作者
Fouda, J. S. Armand Eyebe [1 ]
Koepf, Wolfram [2 ]
Jacquir, Sabir [3 ]
机构
[1] Univ Yaounde I, Dept Phys, Fac Sci, POB 812, Yaounde, Cameroon
[2] Univ Kassel, Inst Math, Heinrich Plett Str 40, D-34132 Kassel, Germany
[3] Univ Bourgogne Franche Comte, CNRS, UMR 6306, LE2I,Arts & Metiers, F-21000 Dijon, France
关键词
Complexity; Entropy; Ordinal pattern; Ordinal array; QUASI-PERIODIC ROUTE; PERMUTATION ENTROPY; DISCRETE MAPS; CHAOS;
D O I
10.1016/j.cnsns.2016.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the multi-dimensional ordinal arrays complexity as a generalized approximation of the ordinal Komogorov-Sinai entropy. The ordinal arrays entropy (OAE) is defined as the Shannon entropy of a series of m-ordinal patterns encoded symbols, while the ordinal arrays complexity (OAC) is defined as the differential of the OAE with respect to m. We theoretically establish that the OAC provides a better estimate of the complexity measure for short length time series. Simulations were carried out using discrete maps, and confirm the efficiency of the OAC as complexity measure from a small data set even in a noisy environment. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 115
页数:13
相关论文
共 50 条
  • [11] Weighted entropy function as an extension of the kolmogorov-sinai entropy
    Mohammadi, Uosef
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2015, 77 (04): : 117 - 122
  • [13] KOLMOGOROV-SINAI ENTROPY OF THE ISING-MODEL
    SAKAGUCHI, H
    PROGRESS OF THEORETICAL PHYSICS, 1991, 86 (02): : 303 - 307
  • [14] Kolmogorov-Sinai entropy rate versus physical entropy
    Latora, V
    Baranger, M
    PHYSICAL REVIEW LETTERS, 1999, 82 (03) : 520 - 523
  • [15] An approach to comparing Kolmogorov-Sinai and permutation entropy
    Unakafova, V. A.
    Unakafov, A. M.
    Keller, K.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (02): : 353 - 361
  • [16] Quantum Kolmogorov-Sinai entropy and Pesin relation
    Goldfriend, Tomer
    Kurchan, Jorge
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [17] Eigenvalue Estimates Using the Kolmogorov-Sinai Entropy
    Shieh, Shih-Feng
    ENTROPY, 2011, 13 (12): : 2036 - 2048
  • [18] An approach to comparing Kolmogorov-Sinai and permutation entropy
    V.A. Unakafova
    A.M. Unakafov
    K. Keller
    The European Physical Journal Special Topics, 2013, 222 : 353 - 361
  • [19] A General Symbolic Approach to Kolmogorov-Sinai Entropy
    Stolz, Inga
    Keller, Karsten
    ENTROPY, 2017, 19 (12):
  • [20] Kolmogorov-Sinai entropy for dilute gases in equilibrium
    vanBeijeren, H
    Dorfman, JR
    Posch, HA
    Dellago, C
    PHYSICAL REVIEW E, 1997, 56 (05): : 5272 - 5277