Bijective enumerations for symmetrized poly-Bernoulli polynomials

被引:0
|
作者
Hirose, Minoru [1 ]
Matsusaka, Toshiki [1 ]
Sekigawa, Ryutaro [2 ]
Yoshizaki, Hyuga [2 ]
机构
[1] Nagoya Univ, Inst Adv Res, Nagoya, Aichi, Japan
[2] Tokyo Univ Sci, Grad Sch Sci & Technol, Chiba, Japan
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2022年 / 29卷 / 03期
关键词
D O I
10.37236/10598
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, B ' enyi and the second author introduced two combinatorial interpretations for symmetrized poly-Bernoulli polynomials. In the present study, we construct bijections between these combinatorial objects. We also define various combinatorial polynomials and prove that all of these polynomials coincide with symmetrized poly-Bernoulli polynomials.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Degenerate poly-Bernoulli polynomials with umbral calculus viewpoint
    Kim, Dae San
    Kim, Taekyun
    Kwon, Hyuck In
    Mansour, Toufik
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [32] Study of degenerate poly-bernoulli polynomials by λ-umbral calculus
    Jang, Lee-Chae
    Kim, Dae San
    Kim, Hanyoung
    Kim, Taekyun
    Lee, Hyunseok
    CMES - Computer Modeling in Engineering and Sciences, 2021, 129 (01): : 393 - 408
  • [33] Hermite and poly-Bernoulli mixed-type polynomials
    Kim, Dae San
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [34] A NEW CLASS OF GENERALIZED POLYNOMIALS ASSOCIATED WITH HERMITE AND POLY-BERNOULLI POLYNOMIALS
    Pathan, M. A.
    Khan, Waseem A.
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 317 - 330
  • [35] Generalized incomplete poly-Bernoulli polynomials and generalized incomplete poly-Cauchy polynomials
    Komatsu, Takao
    Luca, Florian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (02) : 371 - 391
  • [36] On Two Bivariate Kinds of Poly-Bernoulli and Poly-Genocchi Polynomials
    Ryoo, Cheon Seoung
    Khan, Waseem A.
    MATHEMATICS, 2020, 8 (03)
  • [37] Combinatorial aspects of poly-Bernoulli polynomials and poly-Euler numbers
    Benyi, Beata
    Matsusaka, Toshiki
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (03): : 917 - 939
  • [38] Degenerate poly-Bernoulli polynomials arising from degenerate polylogarithm
    Kim, Taekyun
    Kim, Dansan
    Kim, Han-Young
    Lee, Hyunseok
    Jang, Lee-Chae
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [39] THE ARAKAWA-KANEKO ZETA FUNCTION AND POLY-BERNOULLI POLYNOMIALS
    Hamahata, Yoshinori
    GLASNIK MATEMATICKI, 2013, 48 (02) : 249 - 263
  • [40] A STUDY OF POLY-BERNOULLI POLYNOMIALS ASSOCIATED WITH HERMITE POLYNOMIALS WITH q-PARAMETER
    Khan, Waseem A.
    Srivastava, Divesh
    HONAM MATHEMATICAL JOURNAL, 2019, 41 (04): : 781 - 798