Bijective enumerations for symmetrized poly-Bernoulli polynomials

被引:0
|
作者
Hirose, Minoru [1 ]
Matsusaka, Toshiki [1 ]
Sekigawa, Ryutaro [2 ]
Yoshizaki, Hyuga [2 ]
机构
[1] Nagoya Univ, Inst Adv Res, Nagoya, Aichi, Japan
[2] Tokyo Univ Sci, Grad Sch Sci & Technol, Chiba, Japan
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2022年 / 29卷 / 03期
关键词
D O I
10.37236/10598
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, B ' enyi and the second author introduced two combinatorial interpretations for symmetrized poly-Bernoulli polynomials. In the present study, we construct bijections between these combinatorial objects. We also define various combinatorial polynomials and prove that all of these polynomials coincide with symmetrized poly-Bernoulli polynomials.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Fully degenerate poly-Bernoulli polynomials with a q parameter
    Kim, Dae San
    Kim, Tae Kyun
    Mansour, Toufik
    Seo, Jong-Jin
    FILOMAT, 2016, 30 (04) : 1029 - 1035
  • [22] Hermite and poly-Bernoulli mixed-type polynomials
    Dae San Kim
    Taekyun Kim
    Advances in Difference Equations, 2013
  • [23] Barnes' multiple Bernoulli and poly-Bernoulli mixed-type polynomials
    Dolgy, Dmitry V.
    Kim, Dae San
    Kim, Taekyun
    Komatsu, Takao
    Lee, Sang-Hun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (05) : 933 - 951
  • [24] Study of Degenerate Poly-Bernoulli Polynomials by λ-Umbral Calculus
    Jang, Lee-Chae
    San Kim, Dae
    Kim, Hanyoung
    Kim, Taekyun
    Lee, Hyunseok
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 129 (01): : 393 - 408
  • [25] Some applications of degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) : 415 - 421
  • [26] FULLY DEGENERATE HERMITE POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Khan, W. A.
    Nisar, K. S.
    Araci, S.
    Acikgoz, M.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 17 (06): : 461 - 478
  • [27] Higher-order Bernoulli and poly-Bernoulli mixed type polynomials
    Kim, Dae San
    Kim, Taekyun
    GEORGIAN MATHEMATICAL JOURNAL, 2015, 22 (02) : 265 - 272
  • [28] A note on poly-Bernoulli numbers and polynomials of the second kind
    Taekyun Kim
    Hyuck In Kwon
    Sang Hun Lee
    Jong Jin Seo
    Advances in Difference Equations, 2014
  • [29] A note on poly-Bernoulli numbers and polynomials of the second kind
    Kim, Taekyun
    Kwon, Hyuck In
    Lee, Sang Hun
    Seo, Jong Jin
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [30] Generalized harmonic numbers via poly-Bernoulli polynomials
    Kargin, Levent
    Cenkci, Mehmet
    Dil, Ayhan
    Can, Mumun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 365 - 386