Estimation of parameters and eigenmodes of multivariate autoregressive models

被引:347
|
作者
Neumaier, A
Schneider, T
机构
[1] Univ Vienna, Math Inst, A-1090 Vienna, Austria
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
来源
关键词
algorithms; performance; theory; confidence intervals; eigenmodes; least squares; model identification; order selection; parameter estimation; principal oscillation pattern;
D O I
10.1145/382043.382304
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Dynamical characteristics of a complex system can often be inferred from analyses of a stochastic time series model fitted to observations of the system. Oscillations in geophysical systems, for example, are sometimes characterized by principal oscillation patterns, eigenmodes of estimated autoregressive (AR) models of first order. This paper describes the estimation of eigenmodes of AR models of arbitrary order. AR processes of any order can be decomposed into eigenmodes with characteristic oscillation periods, damping times, and excitations. Estimated eigenmodes and confidence intervals for the eigenmodes and their oscillation periods and damping times can be computed from estimated model parameters. As a computationally efficient method of estimating the parameters of AR models from high-dimensional data, a stepwise least squares algorithm is proposed. This algorithm computes model coefficients and evaluates criteria for the selection of the model order stepwise for AR models of successively decreasing order. Numerical simulations indicate that, with the least squares algorithm, the AR model coefficients and the eigenmodes derived from the coefficients are estimated reliably and that the approximate 95% confidence intervals for the coefficients and eigenmodes are rough approximations of the confidence intervals inferred from the simulations.
引用
下载
收藏
页码:27 / 57
页数:31
相关论文
共 50 条
  • [31] Robust estimation in multivariate heteroscedastic regression models with autoregressive covariance structures using EM algorithm
    Guney, Yesim
    Arslan, Olcay
    Yavuz, Fulya Gokalp
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 191
  • [32] Robust estimation using multivariate t innovations for vector autoregressive models via ECM algorithm
    Nduka, Uchenna C.
    Ugah, Tobias E.
    Izunobi, Chinyeaka H.
    JOURNAL OF APPLIED STATISTICS, 2021, 48 (04) : 693 - 711
  • [33] On estimation of parameters for spatial autoregressive model
    Davydov Y.
    Paulauskas V.
    Statistical Inference for Stochastic Processes, 2008, 11 (3) : 237 - 247
  • [34] Iterative estimation algorithm of autoregressive parameters
    Kazlauskas, Kazys
    Kazlauskas, Jaunius
    INFORMATICA, 2006, 17 (02) : 199 - 206
  • [35] MAXIMUM-LIKELIHOOD-ESTIMATION FOR A MULTIVARIATE AUTOREGRESSIVE MODEL
    PHAM, DT
    TONG, DQ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) : 3061 - 3072
  • [36] APPLICATION OF MULTIVARIATE AUTOREGRESSIVE SPECTRUM ESTIMATION OF ULF WAVES
    IOANNIDIS, GA
    RADIO SCIENCE, 1975, 10 (12) : 1043 - 1054
  • [37] Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances
    Kelejian, Harry H.
    Prucha, Ingmar R.
    JOURNAL OF ECONOMETRICS, 2010, 157 (01) : 53 - 67
  • [38] Cardinality estimation with smoothing autoregressive models
    Lin, Yuming
    Xu, Zejun
    Zhang, Yinghao
    Li, You
    Zhang, Jingwei
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (05): : 3441 - 3461
  • [39] Stable Autoregressive Models and Signal Estimation
    Balakrishna, N.
    Hareesh, G.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (11) : 1969 - 1988
  • [40] On parameter estimation of threshold autoregressive models
    Ngai Hang Chan
    Yury A. Kutoyants
    Statistical Inference for Stochastic Processes, 2012, 15 (1) : 81 - 104