Estimation of parameters and eigenmodes of multivariate autoregressive models

被引:347
|
作者
Neumaier, A
Schneider, T
机构
[1] Univ Vienna, Math Inst, A-1090 Vienna, Austria
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
来源
关键词
algorithms; performance; theory; confidence intervals; eigenmodes; least squares; model identification; order selection; parameter estimation; principal oscillation pattern;
D O I
10.1145/382043.382304
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Dynamical characteristics of a complex system can often be inferred from analyses of a stochastic time series model fitted to observations of the system. Oscillations in geophysical systems, for example, are sometimes characterized by principal oscillation patterns, eigenmodes of estimated autoregressive (AR) models of first order. This paper describes the estimation of eigenmodes of AR models of arbitrary order. AR processes of any order can be decomposed into eigenmodes with characteristic oscillation periods, damping times, and excitations. Estimated eigenmodes and confidence intervals for the eigenmodes and their oscillation periods and damping times can be computed from estimated model parameters. As a computationally efficient method of estimating the parameters of AR models from high-dimensional data, a stepwise least squares algorithm is proposed. This algorithm computes model coefficients and evaluates criteria for the selection of the model order stepwise for AR models of successively decreasing order. Numerical simulations indicate that, with the least squares algorithm, the AR model coefficients and the eigenmodes derived from the coefficients are estimated reliably and that the approximate 95% confidence intervals for the coefficients and eigenmodes are rough approximations of the confidence intervals inferred from the simulations.
引用
下载
收藏
页码:27 / 57
页数:31
相关论文
共 50 条
  • [41] Estimation of parameters in multivariate wrapped models for data on ap-torus
    Nodehi, Anahita
    Golalizadeh, Mousa
    Maadooliat, Mehdi
    Agostinelli, Claudio
    COMPUTATIONAL STATISTICS, 2021, 36 (01) : 193 - 215
  • [42] Estimation of parameters in multivariate wrapped models for data on a p-torus
    Anahita Nodehi
    Mousa Golalizadeh
    Mehdi Maadooliat
    Claudio Agostinelli
    Computational Statistics, 2021, 36 : 193 - 215
  • [43] Estimation of generalized threshold autoregressive models
    Zhang, Rongmao
    Liu, Qimeng
    Shi, Jianhua
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (18) : 6456 - 6474
  • [44] EFFECT OF PERTURBATION ON ESTIMATION OF AUTOREGRESSIVE MODELS
    ROBERT, T
    MAILHES, C
    JOURNAL DE PHYSIQUE IV, 1994, 4 (C5): : 1383 - 1386
  • [45] Estimation in random coefficient autoregressive models
    Aue, A
    Horváth, L
    Steinebach, J
    JOURNAL OF TIME SERIES ANALYSIS, 2006, 27 (01) : 61 - 76
  • [46] Bayesian estimation of spatial autoregressive models
    LeSage, JP
    INTERNATIONAL REGIONAL SCIENCE REVIEW, 1997, 20 (1-2) : 113 - 129
  • [47] LASSO estimation of threshold autoregressive models
    Chan, Ngai Hang
    Yau, Chun Yip
    Zhang, Rong-Mao
    JOURNAL OF ECONOMETRICS, 2015, 189 (02) : 285 - 296
  • [48] Cardinality estimation with smoothing autoregressive models
    Yuming Lin
    Zejun Xu
    Yinghao Zhang
    You Li
    Jingwei Zhang
    World Wide Web, 2023, 26 : 3441 - 3461
  • [49] ESTIMATION OF AUTOREGRESSIVE MODELS WITH ARCH ERRORS
    PANTULA, SG
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 1988, 50 : 119 - 138
  • [50] Robust estimation for vector autoregressive models
    Muler, Nora
    Yohai, Victor J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 65 : 68 - 79