Robust estimation using multivariate t innovations for vector autoregressive models via ECM algorithm

被引:4
|
作者
Nduka, Uchenna C. [1 ]
Ugah, Tobias E. [1 ]
Izunobi, Chinyeaka H. [2 ]
机构
[1] Univ Nigeria, Dept Stat, Nsukka, Nigeria
[2] Fed Univ Technol Owerri, Dept Stat, Owerri, Nigeria
关键词
EM algorithms; maximum likelihood estimation; multivariate t distribution; robust estimation; vector autoregressive model; MAXIMUM-LIKELIHOOD-ESTIMATION; DISTRIBUTED INNOVATIONS; EM; CONVERGENCE;
D O I
10.1080/02664763.2020.1742297
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the vector autoregressive model of order p, VAR(p), with multivariate t error distributions, the latter being more prevalent in real life than the usual multivariate normal distribution. It is believed that the maximum-likelihood equations for the multivariate t distribution have convergence problem, hence we develop estimation procedures for VAR(p) model using the normal mean-variance mixture representation of multivariate t distribution. The procedure relies on the computational ease available in Expectation Maximization-based algorithms. The estimators obtained are explicit functions of sample observations and therefore are easy to compute. Extensive simulation experiments show that the estimators have negligible bias and are considerably more efficient than an existing method that uses the least-squares error approach. It is shown that the proposed estimators are robust to plausible deviations from an assumed distribution and hence are more advantageous when compared with the other estimator. One real-life example is given for illustration purposes.
引用
收藏
页码:693 / 711
页数:19
相关论文
共 50 条
  • [1] Robust estimation for vector autoregressive models
    Muler, Nora
    Yohai, Victor J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 65 : 68 - 79
  • [2] Estimation for vector autoregressive model under multivariate skew-t-normal innovations
    Nduka, Uchenna Chinedu
    Ossai, Everestus Okafor
    Madukaife, Mbanefo Solomon
    Ugah, Tobias Ejiofor
    [J]. STATISTICAL MODELLING, 2024,
  • [3] Maximum likelihood estimation in vector autoregressive models with multivariate scaled t-distributed innovations using EM-based algorithms
    Mirniam, A. S.
    Nematollahi, A. R.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (03) : 890 - 904
  • [4] Robust estimation in multivariate heteroscedastic regression models with autoregressive covariance structures using EM algorithm
    Guney, Yesim
    Arslan, Olcay
    Yavuz, Fulya Gokalp
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 191
  • [5] Robust estimation of sparse vector autoregressive models
    Kim, Dongyeong
    Baek, Changryong
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (05) : 631 - 644
  • [6] A robust algorithm for parameter estimation in smooth transition autoregressive models
    Bekiros, Stelios D.
    [J]. ECONOMICS LETTERS, 2009, 103 (01) : 36 - 38
  • [7] A robust class of nonlinear autoregressive models with regression function and dependent innovations using semiparametric kernel estimation
    Alaei, Bita
    Zare, Karim
    Shokri, Soheil
    Maleki, Mohsen
    Hajrajabi, Arezo
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (01) : 50 - 68
  • [8] Smooth Test for Multivariate Normality of Innovations in the Vector Autoregressive Model
    Su, Yan
    Zhong, Yi-Shu
    [J]. CURRENT TRENDS IN COMPUTER SCIENCE AND MECHANICAL AUTOMATION, VOL 1, 2017, : 94 - 101
  • [9] Estimation of cortical multivariate autoregressive models for EEG/MEG using an expectation-maximization algorithm
    Cheung, Bing Leung Patrick
    Van Veen, Barry D.
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 1235 - 1238
  • [10] Estimation in threshold autoregressive models with correlated innovations
    P. Chigansky
    Yu. A. Kutoyants
    [J]. Annals of the Institute of Statistical Mathematics, 2013, 65 : 959 - 992