The largest eigenvalue of small rank perturbations of Hermitian random matrices

被引:133
|
作者
Péché, S [1 ]
机构
[1] Univ Grenoble 1, Inst Fourier, F-38402 St Martin Dheres, France
关键词
D O I
10.1007/s00440-005-0466-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We compute the limiting eigenvalue statistics at the edge of the spectrum of large Hermitian random matrices perturbed by the addition of small rank deterministic matrices. We consider random Hermitian matrices with independent Gaussian entries M(ij),i <= j with various expectations. We prove that the largest eigenvalue of such random matrices exhibits, in the large N limit, various limiting distributions depending on both the eigenvalues of the matrix (EM(ij))(i,j-1)(N) and its rank. This rank is also allowed to increase with N in some restricted way.
引用
收藏
页码:127 / 173
页数:47
相关论文
共 50 条
  • [21] Lower bounds for the largest eigenvalue of a symmetric matrix under perturbations of rank one
    Benasseni, Jacques
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (05): : 565 - 569
  • [22] Spectra of Random Hermitian Matrices with a Small-Rank External Source: The Supercritical and Subcritical Regimes
    M. Bertola
    R. Buckingham
    S. Y. Lee
    V. Pierce
    Journal of Statistical Physics, 2013, 153 : 654 - 697
  • [23] Spectra of Random Hermitian Matrices with a Small-Rank External Source: The Supercritical and Subcritical Regimes
    Bertola, M.
    Buckingham, R.
    Lee, S. Y.
    Pierce, V.
    JOURNAL OF STATISTICAL PHYSICS, 2013, 153 (04) : 654 - 697
  • [24] RANDOM HERMITIAN MATRICES WITH SMALL IMAGINARY PARTS
    MEHTA, ML
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1970, 65 (01): : 107 - &
  • [25] The bounds of the smallest and largest eigenvalues for rank-one modification of the Hermitian eigenvalue problem
    Cheng, GuangHui
    Luo, XiaoXue
    Li, Liang
    APPLIED MATHEMATICS LETTERS, 2012, 25 (09) : 1191 - 1196
  • [26] Almost-Hermitian random matrices: eigenvalue density in the complex plane
    Fyodorov, Y. V.
    Khoruzhenko, B. A.
    Sommers, H.-J.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 226 (1-2):
  • [27] Almost-Hermitian random matrices: Eigenvalue density in the complex plane
    Fyodorov, YV
    Khoruzhenko, BA
    Sommers, HJ
    PHYSICS LETTERS A, 1997, 226 (1-2) : 46 - 52
  • [28] PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES
    O'Rourke, S.
    Williams, N.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2023, 67 (04) : 613 - 632
  • [29] PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES
    O'Rourke, S.
    Williams, N.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (04) : 613 - 632
  • [30] Almost-Hermitian random matrices: Eigenvalue density in the complex plane
    Fyodorov, Yan V.
    Khoruzhenko, Boris A.
    Sommers, Hans-Jürgen
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 226 (1-2): : 46 - 52