The largest eigenvalue of small rank perturbations of Hermitian random matrices

被引:133
|
作者
Péché, S [1 ]
机构
[1] Univ Grenoble 1, Inst Fourier, F-38402 St Martin Dheres, France
关键词
D O I
10.1007/s00440-005-0466-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We compute the limiting eigenvalue statistics at the edge of the spectrum of large Hermitian random matrices perturbed by the addition of small rank deterministic matrices. We consider random Hermitian matrices with independent Gaussian entries M(ij),i <= j with various expectations. We prove that the largest eigenvalue of such random matrices exhibits, in the large N limit, various limiting distributions depending on both the eigenvalues of the matrix (EM(ij))(i,j-1)(N) and its rank. This rank is also allowed to increase with N in some restricted way.
引用
收藏
页码:127 / 173
页数:47
相关论文
共 50 条
  • [31] Small Rank Perturbations of H-Expansive Matrices
    Groenewald, G. J.
    van Rensburg, D. B. Janse
    Ran, A. C. M.
    OPERATOR AND MATRIX THEORY, FUNCTION SPACES, AND APPLICATIONS, IWOTA 2022, 2024, 295 : 203 - 222
  • [32] Eigenvalue Statistics for Random Schrodinger Operators with Non Rank One Perturbations
    Hislop, Peter D.
    Krishna, M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 340 (01) : 125 - 143
  • [33] On arbitrary perturbations of Hermitian matrices
    Lu, Tongxing
    Hecheng Shuzhi Ji Suliao/China Synthetic Resin and Plastics, 15 (01): : 121 - 125
  • [34] A subspace estimator for fixed rank perturbations of large random matrices
    Hachem, Walid
    Loubaton, Philippe
    Mestre, Xavier
    Najim, Jamal
    Vallet, Pascal
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 114 : 427 - 447
  • [35] ARBITRARY PERTURBATIONS OF HERMITIAN MATRICES
    SCHONHAGE, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 24 (APR) : 143 - 149
  • [36] Toeplitz band matrices with small random perturbations
    Sjostrand, Johannes
    Vogel, Martin
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (01): : 275 - 322
  • [37] Eigenvalue repulsion and eigenvector localization in sparse non-Hermitian random matrices
    Zhang, Grace H.
    Nelson, David R.
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [38] A sharp small deviation inequality for the largest eigenvalue of a random matrix
    Aubrun, G
    SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 320 - 337
  • [39] Eigenvalue Outliers of Non-Hermitian Random Matrices with a Local Tree Structure
    Neri, Izaak
    Metz, Fernando Lucas
    PHYSICAL REVIEW LETTERS, 2016, 117 (22)
  • [40] Fast QR eigenvalue algorithms for Hessenberg matrices which are rank-one perturbations of unitary matrices
    Bini, D. A.
    Eidelman, Y.
    Gemignani, L.
    Gohberg, I.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (02) : 566 - 585