Data Augmentation for Support Vector Machines

被引:101
|
作者
Polson, Nicholas G. [1 ]
Scott, Steven L. [1 ]
机构
[1] Booth Sch Business, Chicago, IL USA
来源
BAYESIAN ANALYSIS | 2011年 / 6卷 / 01期
关键词
MCMC; Bayesian inference; Regularization; Lasso; L-alpha-norm; EM; ECME; VARIABLE SELECTION; MAXIMUM-LIKELIHOOD; SCALE MIXTURES; ESTIMATORS; ALGORITHM; MODELS; ECM; EM;
D O I
10.1214/11-BA601
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a latent variable representation of regularized support vector machines (SVM's) that enables EM, ECME or MCMC algorithms to provide parameter estimates. We verify our representation by demonstrating that minimizing the SVM optimality criterion together with the parameter regularization penalty is equivalent to finding the mode of a mean-variance mixture of normals pseudo-posterior distribution. The latent variables in the mixture representation lead to EM and ECME point estimates of SVM parameters, as well as MCMC algorithms based on Gibbs sampling that can bring Bayesian tools for Gaussian linear models to bear on SVM's. We show how to implement SVM's with spike-and-slab priors and run them against data from a standard spam filtering data set.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [41] Support vector machines
    Guenther, Nick
    Schonlau, Matthias
    STATA JOURNAL, 2016, 16 (04): : 917 - 937
  • [42] Support vector machines
    Mammone, Alessia
    Turchi, Marco
    Cristianini, Nello
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2009, 1 (03) : 283 - 289
  • [43] Analysis of detectors for support vector machines and least square support vector machines
    Kuh, A
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1075 - 1079
  • [44] Training support vector machines: an application to welllog data classification
    Yan, H
    Zhang, XG
    Zhang, XD
    2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 1427 - 1431
  • [45] Probabilistic support vector machines for classification of noise affected data
    Li, Han-Xiong
    Yang, Jing-Lin
    Zhang, Geng
    Fan, Bi
    INFORMATION SCIENCES, 2013, 221 : 60 - 71
  • [46] Research on Evolving Support Vector Machines for nonstationary data classification
    Shi, Y.-Z. (shiyz@wxit.edu.cn), 1600, Science Press (35):
  • [47] Fuzzy data domain description using support vector machines
    Wei, LL
    Long, WJ
    Zhang, WX
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 3082 - 3085
  • [48] Training Support Vector Machines on Large Sets of Image Data
    Kukenys, Ignas
    McCane, Brendan
    Neumegen, Tim
    COMPUTER VISION - ACCV 2009, PT III, 2010, 5996 : 331 - 340
  • [49] Krein twin support vector machines for imbalanced data classification
    Jimenez-Castano, C.
    Alvarez-Meza, A.
    Cardenas-Pena, D.
    Orozco-Gutierrez, A.
    Guerrero-Erazo, J.
    PATTERN RECOGNITION LETTERS, 2024, 182 : 39 - 45
  • [50] Massive data discrimination via linear support vector machines
    Bradley, PS
    Mangasarian, OL
    OPTIMIZATION METHODS & SOFTWARE, 2000, 13 (01): : 1 - 10