Data Augmentation for Support Vector Machines

被引:101
|
作者
Polson, Nicholas G. [1 ]
Scott, Steven L. [1 ]
机构
[1] Booth Sch Business, Chicago, IL USA
来源
BAYESIAN ANALYSIS | 2011年 / 6卷 / 01期
关键词
MCMC; Bayesian inference; Regularization; Lasso; L-alpha-norm; EM; ECME; VARIABLE SELECTION; MAXIMUM-LIKELIHOOD; SCALE MIXTURES; ESTIMATORS; ALGORITHM; MODELS; ECM; EM;
D O I
10.1214/11-BA601
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a latent variable representation of regularized support vector machines (SVM's) that enables EM, ECME or MCMC algorithms to provide parameter estimates. We verify our representation by demonstrating that minimizing the SVM optimality criterion together with the parameter regularization penalty is equivalent to finding the mode of a mean-variance mixture of normals pseudo-posterior distribution. The latent variables in the mixture representation lead to EM and ECME point estimates of SVM parameters, as well as MCMC algorithms based on Gibbs sampling that can bring Bayesian tools for Gaussian linear models to bear on SVM's. We show how to implement SVM's with spike-and-slab priors and run them against data from a standard spam filtering data set.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [31] Consequences of preprocessing feature data for support vector machines
    Gorsich, DJ
    Karlsen, RE
    Gerhart, GR
    AUTOMATIC TARGET RECOGNITION XI, 2001, 4379 : 347 - 354
  • [32] Posterior probability support vector machines for unbalanced data
    Tao, Q
    Wu, GW
    Wang, FY
    Wang, J
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (06): : 1561 - 1573
  • [33] Identifying saltcedar with hyperspectral data and support vector machines
    Fletcher, Reginald S.
    Everitt, James H.
    Yang, Chenghai
    GEOCARTO INTERNATIONAL, 2011, 26 (03) : 195 - 209
  • [34] Classification of fuzzy data based on the support vector machines
    Forghani, Yahya
    Yazdi, Hadi Sadoghi
    Effati, Sohrab
    EXPERT SYSTEMS, 2013, 30 (05) : 403 - 417
  • [35] Distributed Estimation of Support Vector Machines for Matrix Data
    Xu W.
    Liu J.
    Lian H.
    IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (05) : 6643 - 6653
  • [36] Assessment of the effectiveness of support vector machines for hyperspectral data
    Pal, M
    Mather, PM
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2004, 20 (07): : 1215 - 1225
  • [37] Relaxed constraints support vector machines for noisy data
    Sabzekar, Mostafa
    Yazdi, Hadi Sadoghi
    Naghibzadeh, Mahmoud
    NEURAL COMPUTING & APPLICATIONS, 2011, 20 (05): : 671 - 685
  • [38] Relaxed constraints support vector machines for noisy data
    Mostafa Sabzekar
    Hadi Sadoghi Yazdi
    Mahmoud Naghibzadeh
    Neural Computing and Applications, 2011, 20 : 671 - 685
  • [39] Support vector machines
    Valkenborg, Dirk
    Rousseau, Axel-Jan
    Geubbelmans, Melvin
    Burzykowski, Tomasz
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2023, 164 (05) : 754 - 757
  • [40] Support vector machines
    Hearst, MA
    IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1998, 13 (04): : 18 - 21