Data Augmentation for Support Vector Machines

被引:101
|
作者
Polson, Nicholas G. [1 ]
Scott, Steven L. [1 ]
机构
[1] Booth Sch Business, Chicago, IL USA
来源
BAYESIAN ANALYSIS | 2011年 / 6卷 / 01期
关键词
MCMC; Bayesian inference; Regularization; Lasso; L-alpha-norm; EM; ECME; VARIABLE SELECTION; MAXIMUM-LIKELIHOOD; SCALE MIXTURES; ESTIMATORS; ALGORITHM; MODELS; ECM; EM;
D O I
10.1214/11-BA601
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a latent variable representation of regularized support vector machines (SVM's) that enables EM, ECME or MCMC algorithms to provide parameter estimates. We verify our representation by demonstrating that minimizing the SVM optimality criterion together with the parameter regularization penalty is equivalent to finding the mode of a mean-variance mixture of normals pseudo-posterior distribution. The latent variables in the mixture representation lead to EM and ECME point estimates of SVM parameters, as well as MCMC algorithms based on Gibbs sampling that can bring Bayesian tools for Gaussian linear models to bear on SVM's. We show how to implement SVM's with spike-and-slab priors and run them against data from a standard spam filtering data set.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [21] Training Data Selection for Support Vector Machines Model
    Dang Huu Nghi
    Luong Chi Mai
    INFORMATION AND ELECTRONICS ENGINEERING, 2011, 6 : 28 - 32
  • [22] Fuzzy support vector machines for biomedical data analysis
    Chen, XJ
    Harrison, R
    Zhang, YQ
    2005 IEEE International Conference on Granular Computing, Vols 1 and 2, 2005, : 131 - 134
  • [23] Fuzzy Multiclass Support Vector Machines for Unbalanced Data
    Wu, Yuanyuan
    Shen, Liyong
    Zhang, Sanguo
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 2227 - 2231
  • [24] Representing Functional Data Using Support Vector Machines
    Gonzalez, Javier
    Munoz, Alberto
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2008, 5197 : 332 - 339
  • [25] Exploiting multiplex data relationships in Support Vector Machines
    Mygdalis, Vasileios
    Tefas, Anastasios
    Pitas, Ioannis
    PATTERN RECOGNITION, 2019, 85 : 70 - 77
  • [26] Classification of electronic nose data with support vector machines
    Pardo, M
    Sberveglieri, G
    SENSORS AND ACTUATORS B-CHEMICAL, 2005, 107 (02): : 730 - 737
  • [27] Boosting support vector machines for imbalanced data sets
    Benjamin X. Wang
    Nathalie Japkowicz
    Knowledge and Information Systems, 2010, 25 : 1 - 20
  • [28] Data mining with parallel support vector machines for classification
    Eitrich, Tatjana
    Lang, Bruno
    ADVANCES IN INFORMATION SYSTEMS, PROCEEDINGS, 2006, 4243 : 197 - 206
  • [29] Bayesian Nonlinear Support Vector Machines for Big Data
    Wenzel, Florian
    Galy-Fajou, Theo
    Deutsch, Matthaus
    Kloft, Marius
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT I, 2017, 10534 : 307 - 322
  • [30] Boosting support vector machines for imbalanced data sets
    Wang, Benjamin X.
    Japkowicz, Nathalie
    FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS, 2008, 4994 : 38 - 47