Data Augmentation for Support Vector Machines

被引:101
|
作者
Polson, Nicholas G. [1 ]
Scott, Steven L. [1 ]
机构
[1] Booth Sch Business, Chicago, IL USA
来源
BAYESIAN ANALYSIS | 2011年 / 6卷 / 01期
关键词
MCMC; Bayesian inference; Regularization; Lasso; L-alpha-norm; EM; ECME; VARIABLE SELECTION; MAXIMUM-LIKELIHOOD; SCALE MIXTURES; ESTIMATORS; ALGORITHM; MODELS; ECM; EM;
D O I
10.1214/11-BA601
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a latent variable representation of regularized support vector machines (SVM's) that enables EM, ECME or MCMC algorithms to provide parameter estimates. We verify our representation by demonstrating that minimizing the SVM optimality criterion together with the parameter regularization penalty is equivalent to finding the mode of a mean-variance mixture of normals pseudo-posterior distribution. The latent variables in the mixture representation lead to EM and ECME point estimates of SVM parameters, as well as MCMC algorithms based on Gibbs sampling that can bring Bayesian tools for Gaussian linear models to bear on SVM's. We show how to implement SVM's with spike-and-slab priors and run them against data from a standard spam filtering data set.
引用
下载
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [1] Support vector machines for dyadic data
    Hochreiter, Sepp
    Obermayer, Klaus
    NEURAL COMPUTATION, 2006, 18 (06) : 1472 - 1510
  • [2] Interpretable support vector machines for functional data
    Martin-Barragan, Belen
    Lillo, Rosa
    Romo, Juan
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 232 (01) : 146 - 155
  • [3] Data mining via support vector machines
    Mangasarian, OL
    SYSTEM MODELING AND OPTIMIZATION XX, 2003, 130 : 91 - 112
  • [4] Training data selection for support vector machines
    Wang, JG
    Neskovic, P
    Cooper, LN
    ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 554 - 564
  • [5] Support vector machines for classification of hyperspectral data
    Gualtieri, JA
    Chettri, S
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 813 - 815
  • [6] On sparsity of data representation in support vector machines
    Ancona, N
    Maglietta, R
    Stella, E
    Proceedings of the Sixth IASTED International Conference on Signal and Image Processing, 2004, : 596 - 601
  • [7] Constructing support vector machines with missing data
    Stewart, Thomas G.
    Zeng, Donglin
    Wu, Michael C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2018, 10 (04)
  • [8] Fast Support Vector Machines for Continuous Data
    Kramer, Kurt A.
    Hall, Lawrence O.
    Goldgof, Dmitry B.
    Remsen, Andrew
    Luo, Tong
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (04): : 989 - 1001
  • [9] Adaptive Data Pruning for Support Vector Machines
    Fujiwara, Yasuhiro
    Arai, Junya
    Kanai, Sekitoshi
    Ida, Yasutoshi
    Ueda, Naonori
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 683 - 692
  • [10] APPLICATION OF SUPPORT VECTOR MACHINES IN MEDICAL DATA
    Weng, Yongqiang
    Wu, Chunshan
    Jiang, Qiaowei
    Guo, Wenming
    Wang, Cong
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 200 - 204