COMPLETE SPACELIKE HYPERSURFACES IN THE ANTI-DE SITTER SPACE: RIGIDITY, NONEXISTENCE AND CURVATURE ESTIMATES

被引:1
|
作者
Barboza, Weiller F. C. [1 ]
De Lima, Henrique F. [1 ]
Oliveira, Arlandson M. S. [2 ]
Velasquez, Marco Antonio L. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58109970 Campina Grande, Paraiba, Brazil
[2] Univ Estadual Paraiba, Ctr Ciencias Exatas & Sociais Aplicadas, BR-58706550 Patos de Minas, Paraiba, Brazil
关键词
anti-de Sitter space; complete spacelike hypersurfaces; totally umbilical hypersurfaces; higher order mean curvatures; r -maximal hypersurfaces; index of nullity; CONSTANT MEAN-CURVATURE; MAXIMAL SPACE; UNIQUENESS;
D O I
10.4064/cm8502-12-2021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our purpose is to investigate the geometry of complete spacelike hypersurfaces immersed in the anti-de Sitter space H-1(n+1). We start by proving rigidity results for such hypersurfaces under suitable constraints on their higher order mean curvatures. We also obtain a lower estimate for the index of minimum relative nullity for r-maximal spacelike hypersurfaces and a nonexistence result for 1-maximal spacelike hypersurfaces of H-1(n+1). Finally, we employ a technique due to Aledo and Alias (2000) to prove some curvature estimates for complete spacelike hypersurface of H-1(n+1); as a consequence, we get further nonexistence results. In particular, we show the nonexistence of complete maximal spacelike hypersurfaces in certain open regions of Hn+1 1. Our approach is mainly based on a suitable extension of the generalized maximum principle of Omori and Yau due to Alias, Impera and Rigoli (2012).
引用
收藏
页码:253 / 273
页数:21
相关论文
共 50 条