Edge magnetism in transition metal dichalcogenide nanoribbons: Mean field theory and determinant quantum Monte Carlo

被引:6
|
作者
Brito, Francisco M. O. [1 ]
Li, Linhu [2 ,3 ]
Lopes, Joao M. V. P. [4 ]
V. Castro, Eduardo [4 ,5 ]
机构
[1] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Quantum Metrol & Sensing &, Zhuhai Campus, Zhuhai 519082, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Zhuhai 519082, Peoples R China
[4] Univ Porto, Dept Fis & Astron, Ctr Fis Univ Minho & Porto, Fac Ciencias, P-4169007 Porto, Portugal
[5] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
GRAPHENE NANORIBBONS; HALF-METALLICITY; ZIGZAG; MOS2; FERROMAGNETISM; OPTOELECTRONICS; STATES;
D O I
10.1103/PhysRevB.105.195130
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Edge magnetism in zigzag transition metal dichalcogenide nanoribbons is studied using a three-band tight binding model with local electron-electron interactions. Both mean field theory and the unbiased, numerically exact determinant quantum Monte Carlo method are applied. Depending on the edge filling, mean field theory predicts different phases: gapped spin dimer and antiferromagnetic phases appear for two specific fillings, with a tendency towards metallic edge-ferromagnetism away from those fillings. Determinant quantum Monte Carlo simulations confirm the stability of the antiferromagnetic gapped phase at the same edge filling as mean field theory, despite being sign-problematic for other fillings. The obtained results point to edge filling as yet another key ingredient to understand the observed magnetism in nanosheets. Moreover, the filling dependent edge magnetism gives rise to spin-polarized edge currents in zigzag nanoribbons which could be tuned through a back gate voltage, with possible applications to spintronics.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Quantum Monte Carlo solution of the dynamical mean field equations in real time
    Dong, Qiaoyuan
    Krivenko, Igor
    Kleinhenz, Joseph
    Antipov, Andrey E.
    Cohen, Guy
    Gull, Emanuel
    PHYSICAL REVIEW B, 2017, 96 (15)
  • [32] Dynamical mean field theory of the bilayer Hubbard model with inchworm Monte Carlo
    Goldberger, Dolev
    Fridman, Yehonatan
    Gull, Emanuel
    Eidelstein, Eitan
    Cohen, Guy
    PHYSICAL REVIEW B, 2024, 109 (08)
  • [33] MEAN FIELD-THEORY AND MONTE-CARLO SIMULATION OF MULTISITE ADSORPTION
    VANDEREERDEN, JP
    STAIKOV, G
    KASHCHIEV, D
    LORENZ, WJ
    BUDEVSKI, E
    SURFACE SCIENCE, 1979, 82 (02) : 364 - 382
  • [34] Molecular field theory of the Frederiks transition and its Monte Carlo confirmation
    Yang, Y
    Lu, J
    Zhang, H
    Yan, D
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1995, 259 : 23 - 36
  • [35] Metal-insulator and magnetic phase diagram of Ca2RuO4 from auxiliary field quantum Monte Carlo and dynamical mean field theory
    Hao, Hongxia
    Georges, Antoine
    Millis, Andrew J.
    Rubenstein, Brenda
    Han, Qiang
    Shi, Hao
    PHYSICAL REVIEW B, 2020, 101 (23)
  • [36] Quantum Monte Carlo Calculations with Chiral Effective Field Theory Interactions
    Gezerlis, A.
    Tews, I.
    Epelbaum, E.
    Gandolfi, S.
    Hebeler, K.
    Nogga, A.
    Schwenk, A.
    PHYSICAL REVIEW LETTERS, 2013, 111 (03)
  • [37] Multiorbital cluster dynamical mean-field theory with an improved continuous-time quantum Monte Carlo algorithm
    Nomura, Yusuke
    Sakai, Shiro
    Arita, Ryotaro
    PHYSICAL REVIEW B, 2014, 89 (19)
  • [38] Comment on "Projective quantum Monte Carlo method for the Anderson impurity model and its application to dynamical mean field theory"
    Katsnelson, MI
    PHYSICAL REVIEW LETTERS, 2006, 96 (13)
  • [39] Ultrafast field-driven valley polarization of transition metal dichalcogenide quantum dots
    Mitra, Aranyo
    Zafar, Ahmal Jawad
    Apalkov, Vadym
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (20)
  • [40] A quantum Monte Carlo study of electron correlation in transition metal oxygen molecules
    Wagner, L
    Mitas, L
    CHEMICAL PHYSICS LETTERS, 2003, 370 (3-4) : 412 - 417