Edge magnetism in transition metal dichalcogenide nanoribbons: Mean field theory and determinant quantum Monte Carlo

被引:6
|
作者
Brito, Francisco M. O. [1 ]
Li, Linhu [2 ,3 ]
Lopes, Joao M. V. P. [4 ]
V. Castro, Eduardo [4 ,5 ]
机构
[1] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Quantum Metrol & Sensing &, Zhuhai Campus, Zhuhai 519082, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Zhuhai 519082, Peoples R China
[4] Univ Porto, Dept Fis & Astron, Ctr Fis Univ Minho & Porto, Fac Ciencias, P-4169007 Porto, Portugal
[5] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
GRAPHENE NANORIBBONS; HALF-METALLICITY; ZIGZAG; MOS2; FERROMAGNETISM; OPTOELECTRONICS; STATES;
D O I
10.1103/PhysRevB.105.195130
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Edge magnetism in zigzag transition metal dichalcogenide nanoribbons is studied using a three-band tight binding model with local electron-electron interactions. Both mean field theory and the unbiased, numerically exact determinant quantum Monte Carlo method are applied. Depending on the edge filling, mean field theory predicts different phases: gapped spin dimer and antiferromagnetic phases appear for two specific fillings, with a tendency towards metallic edge-ferromagnetism away from those fillings. Determinant quantum Monte Carlo simulations confirm the stability of the antiferromagnetic gapped phase at the same edge filling as mean field theory, despite being sign-problematic for other fillings. The obtained results point to edge filling as yet another key ingredient to understand the observed magnetism in nanosheets. Moreover, the filling dependent edge magnetism gives rise to spin-polarized edge currents in zigzag nanoribbons which could be tuned through a back gate voltage, with possible applications to spintronics.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Quantum Monte Carlo study of strongly correlated electrons: Cellular dynamical mean-field theory
    Kyung, B.
    Kotliar, G.
    Tremblay, A. -M. S.
    PHYSICAL REVIEW B, 2006, 73 (20)
  • [22] Incorporating dynamic mean-field theory into diagrammatic Monte Carlo
    Pollet, Lode
    Prokof'ev, Nikolay V.
    Svistunov, Boris V.
    PHYSICAL REVIEW B, 2011, 83 (16):
  • [23] Determinant quantum Monte Carlo study of the screening of the one-body potential near a metal-insulator transition
    Chakraborty, P. B.
    Denteneer, P. J. H.
    Scalettar, R. T.
    PHYSICAL REVIEW B, 2007, 75 (12)
  • [24] The classical phase transition in LiHoF4:: Results from mean field theory and Monte Carlo simulations
    Kjonsberg, H
    Girvin, SM
    FUNDAMENTAL PHYSICS OF FERROELECTRICS 2000, 2000, 535 : 323 - 331
  • [25] Energetics and dipole moment of transition metal monoxides by quantum Monte Carlo
    Wagner, Lucas K.
    Mitas, Lubos
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (03):
  • [26] Continuous-time quantum Monte Carlo solver for dynamical mean field theory in the compact Legendre representation
    Sheridan, Evan
    Weber, Cedric
    Plekhanov, Evgeny
    Rhodes, Christopher
    PHYSICAL REVIEW B, 2019, 99 (20)
  • [27] Projective quantum Monte Carlo method for the Anderson impurity model and its application to dynamical mean field theory
    Feldbacher, M
    Held, K
    Assaad, FF
    PHYSICAL REVIEW LETTERS, 2004, 93 (13) : 136405 - 1
  • [28] Quantum Monte Carlo Studies of CO Adsorption on Transition Metal Surfaces
    Hsing, Cheng-Rong
    Chang, Chun-Ming
    Cheng, Ching
    Wei, Ching-Ming
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (25): : 15659 - 15664
  • [29] Progress in quantum Monte Carlo calculations of perovskite transition metal oxides
    Wagner, LK
    Sen, P
    Mitas, L
    FUNDAMENTAL PHYSICS OF FERROELECTRICS 2003, 2003, 677 : 241 - 250
  • [30] Depleted Kondo lattices: Quantum Monte Carlo and mean-field calculations
    Assaad, FF
    PHYSICAL REVIEW B, 2002, 65 (11): : 1 - 11