Edge magnetism in transition metal dichalcogenide nanoribbons: Mean field theory and determinant quantum Monte Carlo

被引:6
|
作者
Brito, Francisco M. O. [1 ]
Li, Linhu [2 ,3 ]
Lopes, Joao M. V. P. [4 ]
V. Castro, Eduardo [4 ,5 ]
机构
[1] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Quantum Metrol & Sensing &, Zhuhai Campus, Zhuhai 519082, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Zhuhai 519082, Peoples R China
[4] Univ Porto, Dept Fis & Astron, Ctr Fis Univ Minho & Porto, Fac Ciencias, P-4169007 Porto, Portugal
[5] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
GRAPHENE NANORIBBONS; HALF-METALLICITY; ZIGZAG; MOS2; FERROMAGNETISM; OPTOELECTRONICS; STATES;
D O I
10.1103/PhysRevB.105.195130
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Edge magnetism in zigzag transition metal dichalcogenide nanoribbons is studied using a three-band tight binding model with local electron-electron interactions. Both mean field theory and the unbiased, numerically exact determinant quantum Monte Carlo method are applied. Depending on the edge filling, mean field theory predicts different phases: gapped spin dimer and antiferromagnetic phases appear for two specific fillings, with a tendency towards metallic edge-ferromagnetism away from those fillings. Determinant quantum Monte Carlo simulations confirm the stability of the antiferromagnetic gapped phase at the same edge filling as mean field theory, despite being sign-problematic for other fillings. The obtained results point to edge filling as yet another key ingredient to understand the observed magnetism in nanosheets. Moreover, the filling dependent edge magnetism gives rise to spin-polarized edge currents in zigzag nanoribbons which could be tuned through a back gate voltage, with possible applications to spintronics.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Metal-Insulator Transition in Strained Graphene: A Quantum Monte Carlo Study
    Zhang, Lufeng
    Ma, Chi
    Ma, Tianxing
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (09):
  • [42] Quantum Monte Carlo ionization potential and electron affinity for transition metal atoms
    Buendia, E.
    Galvez, F. J.
    Maldonado, P.
    Sarsa, A.
    CHEMICAL PHYSICS LETTERS, 2013, 559 : 12 - 17
  • [43] Monte Carlo simulations of a disordered superconductor-metal quantum phase transition
    Ibrahim, Ahmed K.
    Vojta, Thomas
    EUROPEAN PHYSICAL JOURNAL B, 2018, 91 (12):
  • [44] Quantum Monte Carlo for 3d transition-metal atoms
    Sarsa, A.
    Buendia, E.
    Galvez, F. J.
    Maldonado, P.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (10): : 2074 - 2076
  • [45] Monte Carlo simulations of a disordered superconductor-metal quantum phase transition
    Ahmed K. Ibrahim
    Thomas Vojta
    The European Physical Journal B, 2018, 91
  • [46] Beyond the mean-field: Quantum Monte Carlo approach for finite fermi systems
    Alhassid, Y
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1998, 48 (6-7) : 659 - 670
  • [47] Quantum Monte Carlo algorithm for nonlocal corrections to the dynamical mean-field approximation
    Jarrell, M
    Maier, T
    Huscroft, C
    Moukouri, S
    PHYSICAL REVIEW B, 2001, 64 (19)
  • [48] Mean field rate theory and object kinetic Monte Carlo: A comparison of kinetic models;
    Stoller, R. E.
    Golubov, S. I.
    Domain, C.
    Becquart, C. S.
    JOURNAL OF NUCLEAR MATERIALS, 2008, 382 (2-3) : 77 - 90
  • [49] Modeling the camel-to-bell shape transition of the differential capacitance using mean-field theory and Monte Carlo simulations
    Bossa, Guilherme, V
    Caetano, Daniel L. Z.
    de Carvalho, Sidney J.
    Bohinc, Klemen
    May, Sylvio
    EUROPEAN PHYSICAL JOURNAL E, 2018, 41 (09):
  • [50] Modeling the camel-to-bell shape transition of the differential capacitance using mean-field theory and Monte Carlo simulations
    Guilherme V. Bossa
    Daniel L. Z. Caetano
    Sidney J. de Carvalho
    Klemen Bohinc
    Sylvio May
    The European Physical Journal E, 2018, 41