Nonlinear amplification in hydrodynamic turbulence

被引:0
|
作者
Iyer, Kartik P. [1 ,2 ,3 ]
Sreenivasan, Katepalli R. [3 ,4 ,5 ]
Yeung, P. K. [6 ,7 ]
机构
[1] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA
[3] NYU, Tandon Sch Engn, New York, NY 11201 USA
[4] NYU, Courant Inst Math Sci, New York, NY 11201 USA
[5] NYU, Dept Phys, New York, NY 11201 USA
[6] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[7] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
isotropic turbulence; turbulence simulation; turbulence theory; ARBITRARILY COMPLEX TOPOLOGY; DIRECT NUMERICAL SIMULATIONS; ANALOGOUS EULER FLOWS; MAGNETOSTATIC EQUILIBRIA; HELICITY; FLUCTUATIONS; DEPRESSION;
D O I
10.1017/jfm.2021.914
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Using direct numerical simulations performed on periodic cubes of various sizes, the largest being 8192(3), we examine the nonlinear advection term in the Navier-Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier-Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Hydrodynamic turbulence in unbounded shear flows
    Lominadze, JG
    LASER AND PARTICLE BEAMS, 2000, 18 (02) : 183 - 187
  • [42] SOUND AND HYDRODYNAMIC TURBULENCE IN A COMPRESSIBLE LIQUID
    LVOV, VS
    MIKHAILOV, AV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1978, 74 (04): : 1445 - 1457
  • [43] Hydrodynamic and magnetohydrodynamic turbulence: A rapid overview
    Pouquet, A
    SOLAR AND ASTROPHYSICAL MAGNETOHYDRODYNAMIC FLOWS, 1996, 481 : 195 - 216
  • [44] Hydrodynamic stability theory and wall turbulence
    Sen, P.K.
    Veeravalli, Srinivas V.
    2000, Indian Academy of Sciences (79):
  • [45] Hydrodynamic Instability and Turbulence in Quantum Fluids
    Makoto Tsubota
    Journal of Low Temperature Physics, 2013, 171 : 571 - 581
  • [46] The Concept of hydrodynamic Amplification in filled Elastomers
    Domurath, Jan
    Saphiannikova, Marina
    Heinrich, Gert
    KGK-KAUTSCHUK GUMMI KUNSTSTOFFE, 2017, 70 (1-2): : 40 - 43
  • [47] Transition from hydrodynamic turbulence to magnetohydrodynamic turbulence in von Karman flows
    Verhille, Gautier
    Khalilov, Ruslan
    Plihon, Nicolas
    Frick, Peter
    Pinton, Jean-Francois
    JOURNAL OF FLUID MECHANICS, 2012, 693 : 243 - 260
  • [48] Nonlinear hydrodynamic stability
    Isichenko, MB
    PHYSICAL REVIEW LETTERS, 1998, 80 (05) : 972 - 975
  • [49] RESONANT AMPLIFICATION OF TURBULENCE BY THE BLAST WAVES
    Zankovich, A. M.
    Kovalenko, I. G.
    ASTROPHYSICAL JOURNAL, 2015, 800 (01):
  • [50] NONLINEAR DYNAMICS AND TURBULENCE
    刘式达
    ActaMeteorologicaSinica, 1988, (02) : 247 - 255