Nonlinear amplification in hydrodynamic turbulence

被引:0
|
作者
Iyer, Kartik P. [1 ,2 ,3 ]
Sreenivasan, Katepalli R. [3 ,4 ,5 ]
Yeung, P. K. [6 ,7 ]
机构
[1] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA
[3] NYU, Tandon Sch Engn, New York, NY 11201 USA
[4] NYU, Courant Inst Math Sci, New York, NY 11201 USA
[5] NYU, Dept Phys, New York, NY 11201 USA
[6] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[7] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
isotropic turbulence; turbulence simulation; turbulence theory; ARBITRARILY COMPLEX TOPOLOGY; DIRECT NUMERICAL SIMULATIONS; ANALOGOUS EULER FLOWS; MAGNETOSTATIC EQUILIBRIA; HELICITY; FLUCTUATIONS; DEPRESSION;
D O I
10.1017/jfm.2021.914
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Using direct numerical simulations performed on periodic cubes of various sizes, the largest being 8192(3), we examine the nonlinear advection term in the Navier-Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier-Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Relating quantum mechanics with hydrodynamic turbulence
    Tsekov, Roumen
    Heifetz, Eyal
    Cohen, Eliahu
    EPL, 2018, 122 (04)
  • [32] DISCUSSION OF THE KLIMONTOVICH THEORY OF HYDRODYNAMIC TURBULENCE
    EBELING, W
    ANNALEN DER PHYSIK, 1983, 40 (01) : 25 - 33
  • [33] Scaling laws in chiral hydrodynamic turbulence
    Yamamoto, Naoki
    PHYSICAL REVIEW D, 2016, 93 (12)
  • [34] SUPPRESSION OF IONIZATION WAVES BY HYDRODYNAMIC TURBULENCE
    ATTWOOD, D
    PHYSICS OF FLUIDS, 1974, 17 (06) : 1341 - 1342
  • [35] Hydrodynamic stability theory and wall turbulence
    Sen, PK
    Veeravalli, SV
    CURRENT SCIENCE, 2000, 79 (06): : 840 - 848
  • [36] Scaling exponents in anisotropic hydrodynamic turbulence
    L'vov, VS
    Procaccia, I
    Tiberkevich, V
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [37] Measurement of beam driven hydrodynamic turbulence
    Norem, J
    Black, E
    Bandura, L
    Cummings, MAC
    Errede, D
    PROCEEDINGS OF THE 2003 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-5, 2003, : 1999 - 2001
  • [38] On turbulence in hydrodynamic lubrication and in ground effect
    Scheichl, Bernhard
    Kluwick, Alfred
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): INSTABILITY, TRANSITION, GRID TURBULENCE AND JETS, 2011, 318
  • [39] HYDRODYNAMIC TURBULENCE AND THE RENORMALIZATION-GROUP
    KRAICHNAN, RH
    PHYSICAL REVIEW A, 1982, 25 (06): : 3281 - 3289
  • [40] Lagrangian Structure Functions in Hydrodynamic Turbulence
    Zybin, K. P.
    Sirota, V. A.
    Il'in, A. S.
    Gurevich, A. V.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2008, 107 (05) : 879 - 886