Nonlinear amplification in hydrodynamic turbulence

被引:0
|
作者
Iyer, Kartik P. [1 ,2 ,3 ]
Sreenivasan, Katepalli R. [3 ,4 ,5 ]
Yeung, P. K. [6 ,7 ]
机构
[1] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA
[3] NYU, Tandon Sch Engn, New York, NY 11201 USA
[4] NYU, Courant Inst Math Sci, New York, NY 11201 USA
[5] NYU, Dept Phys, New York, NY 11201 USA
[6] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[7] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
isotropic turbulence; turbulence simulation; turbulence theory; ARBITRARILY COMPLEX TOPOLOGY; DIRECT NUMERICAL SIMULATIONS; ANALOGOUS EULER FLOWS; MAGNETOSTATIC EQUILIBRIA; HELICITY; FLUCTUATIONS; DEPRESSION;
D O I
10.1017/jfm.2021.914
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Using direct numerical simulations performed on periodic cubes of various sizes, the largest being 8192(3), we examine the nonlinear advection term in the Navier-Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier-Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Hydrodynamic Turbulence and Intermittent Random Fields
    Robert, Raoul
    Vargas, Vincent
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 284 (03) : 649 - 673
  • [22] Hydrodynamic and magnetohydrodynamic simulations of wire turbulence
    Fogerty, Erica
    Liu, Baowei
    Frank, Adam
    Carroll-Nellenback, Jonathan
    Lebedev, Sergey
    HIGH ENERGY DENSITY PHYSICS, 2019, 33
  • [23] Hydrodynamic Instability and Turbulence in Quantum Fluids
    Tsubota, Makoto
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2013, 171 (5-6) : 571 - 581
  • [24] PHYSICAL MODEL OH HYDRODYNAMIC TURBULENCE
    PARKER, EN
    PHYSICS OF FLUIDS, 1969, 12 (08) : 1592 - +
  • [25] Anisotropic hydrodynamic turbulence in accretion disks
    Stoll, Moritz H. R.
    Kley, Wilhelm
    Picogna, Giovanni
    ASTRONOMY & ASTROPHYSICS, 2017, 599
  • [26] Hydrodynamic turbulence in disks with embedded planets
    Ziampras, Alexandros
    Kley, Wilhelm
    Nelson, Richard P.
    ASTRONOMY & ASTROPHYSICS, 2023, 670
  • [27] Lagrangian structure functions in hydrodynamic turbulence
    K. P. Zybin
    V. A. Sirota
    A. S. Il’in
    A. V. Gurevich
    Journal of Experimental and Theoretical Physics, 2008, 107 : 879 - 886
  • [28] HYDRODYNAMIC LANGEVIN APPROACH TO THE TURBULENCE THEORY
    SKVORTSOV, GE
    ZHURNAL TEKHNICHESKOI FIZIKI, 1989, 59 (03): : 62 - 69
  • [29] Hydrodynamic Turbulence and Intermittent Random Fields
    Raoul Robert
    Vincent Vargas
    Communications in Mathematical Physics, 2008, 284 : 649 - 673
  • [30] HYDRODYNAMIC TURBULENCE AND SUBGRID SCALE CLOSURE
    ZHOU, Y
    VAHALA, G
    PHYSICS LETTERS A, 1990, 147 (01) : 43 - 48