Nonlinear amplification in hydrodynamic turbulence

被引:0
|
作者
Iyer, Kartik P. [1 ,2 ,3 ]
Sreenivasan, Katepalli R. [3 ,4 ,5 ]
Yeung, P. K. [6 ,7 ]
机构
[1] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA
[3] NYU, Tandon Sch Engn, New York, NY 11201 USA
[4] NYU, Courant Inst Math Sci, New York, NY 11201 USA
[5] NYU, Dept Phys, New York, NY 11201 USA
[6] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[7] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
isotropic turbulence; turbulence simulation; turbulence theory; ARBITRARILY COMPLEX TOPOLOGY; DIRECT NUMERICAL SIMULATIONS; ANALOGOUS EULER FLOWS; MAGNETOSTATIC EQUILIBRIA; HELICITY; FLUCTUATIONS; DEPRESSION;
D O I
10.1017/jfm.2021.914
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Using direct numerical simulations performed on periodic cubes of various sizes, the largest being 8192(3), we examine the nonlinear advection term in the Navier-Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier-Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Nonlinear hydrodynamic instability and turbulence in pulsatile flow
    Xu, Duo
    Varshney, Atul
    Ma, Xingyu
    Song, Baofang
    Riedl, Michael
    Avila, Marc
    Hof, Bjorn
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (21) : 11233 - 11239
  • [2] Superfast amplification and superfast nonlinear saturation of perturbations as a mechanism of turbulence
    Li, Y. Charles
    Ho, Richard D. J. G.
    Berera, Arjun
    Feng, Z. C.
    JOURNAL OF FLUID MECHANICS, 2020, 904
  • [3] Turbulence amplification
    Chadid-Vernin, M
    ASTRONOMICAL SITE EVALUATION IN THE VISIBLE AND RADIO RANGE, 2002, 266 : 44 - 46
  • [4] Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas
    Meinecke, Jena
    Tzeferacos, Petros
    Bell, Anthony
    Bingham, Robert
    Clarke, Robert
    Churazov, Eugene
    Crowston, Robert
    Doyle, Hugo
    Drake, R. Paul
    Heathcote, Robert
    Koenig, Michel
    Kuramitsu, Yasuhiro
    Kuranz, Carolyn
    Lee, Dongwook
    MacDonald, Michael
    Murphy, Christopher
    Notley, Margaret
    Park, Hye-Sook
    Pelka, Alexander
    Ravasio, Alessandra
    Reville, Brian
    Sakawa, Youichi
    Wan, Willow
    Woolsey, Nigel
    Yurchak, Roman
    Miniati, Francesco
    Schekochihin, Alexander
    Lamb, Don
    Gregori, Gianluca
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (27) : 8211 - 8215
  • [5] Superstatistics in hydrodynamic turbulence
    Beck, C
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 193 (1-4) : 195 - 207
  • [6] On the phenomenology of hydrodynamic shear turbulence
    Longaretti, PY
    ASTROPHYSICAL JOURNAL, 2002, 576 (01): : 587 - 598
  • [7] Lessons from hydrodynamic turbulence
    Falkovich, G
    Sreenivasan, KR
    PHYSICS TODAY, 2006, 59 (04) : 43 - 49
  • [8] REDUCED DESCRIPTIONS OF HYDRODYNAMIC TURBULENCE
    KRAICHNAN, RH
    JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (5-6) : 949 - 963
  • [9] HYDRODYNAMIC INSTABILITIES AND THE TRANSITION TO TURBULENCE
    SWINNEY, HL
    SUPPLEMENT OF THE PROGRESS OF THEORETICAL PHYSICS, 1978, (64): : 164 - 175
  • [10] DETERMINISTIC THEORY OF HYDRODYNAMIC TURBULENCE
    MASLOV, VP
    THEORETICAL AND MATHEMATICAL PHYSICS, 1985, 65 (03) : 1272 - 1272