Fluctuations and criticality in the random-field Ising model

被引:14
|
作者
Theodorakis, Panagiotis E. [1 ]
Georgiou, Ioannis [2 ,3 ]
Fytas, Nikolaos G. [4 ,5 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[2] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[3] Vienna Univ Technol, Ctr Computat Mat Sci, A-1040 Vienna, Austria
[4] Univ Athens, Dept Phys, GR-15784 Athens, Greece
[5] Coventry Univ, Appl Math Res Ctr, Coventry CV1 5FB, W Midlands, England
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
关键词
SPACE RENORMALIZATION-GROUP; LOWER CRITICAL DIMENSION; PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; RANDOM-SYSTEMS; MONTE-CARLO; MULTICRITICAL POINTS; TRICRITICAL POINTS; GROUND-STATES; UNIVERSALITY;
D O I
10.1103/PhysRevE.87.032119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the critical properties of the d = 3 random-field Ising model with a Gaussian field distribution at zero temperature. By implementing suitable graph-theoretical algorithms, we perform a large-scale numerical simulation of the model for a vast range of values of the disorder strength h and system sizes V = L x L x L, with L <= 156. Using the sample-to-sample fluctuations of various quantities and proper finite-size scaling techniques we estimate with high accuracy the critical disorder strength h(c) and the correlation length exponent nu. Additional simulations in the area of the estimated critical-field strength and relevant scaling analysis of the bond energy suggest bounds for the specific heat critical exponent alpha and the violation of the hyperscaling exponent theta. Finally, a data collapse analysis of the order parameter and disconnected susceptibility provides accurate estimates for the critical exponent ratios beta/nu and (gamma) over bar/nu, respectively. DOI: 10.1103/PhysRevE.87.032119
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Hysteresis in the random-field Ising model and bootstrap percolation
    Sabhapandit, S
    Dhar, D
    Shukla, P
    PHYSICAL REVIEW LETTERS, 2002, 88 (19) : 1972021 - 1972024
  • [42] Random-field Ising model on complete graphs and trees
    Dobrin, R
    Meinke, JH
    Duxbury, PM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (19): : L247 - L254
  • [43] Universality aspects of the trimodal random-field Ising model
    Fytas, N. G.
    Theodorakis, P. E.
    Georgiou, I.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (10):
  • [44] Monte Carlo simulations of the random-field Ising model
    Barber, W.C.
    Belanger, D.P.
    Journal of Magnetism and Magnetic Materials, 2001, 226-230 (PART I) : 545 - 547
  • [45] Review of Recent Developments in the Random-Field Ising Model
    Fytas, Nikolaos G.
    Martin-Mayor, Victor
    Picco, Marco
    Sourlas, Nicolas
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (02) : 665 - 672
  • [46] Modified scaling relation for the random-field Ising model
    Nowak, U
    Usadel, KD
    Esser, J
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 250 (1-4) : 1 - 7
  • [47] Field history analysis of spin configurations in the random-field Ising model
    Basso, V
    Magni, A
    PHYSICA B-CONDENSED MATTER, 2004, 343 (1-4) : 275 - 280
  • [48] Hysteresis in the antiferromagnetic random-field Ising model at zero temperature
    Kurbah, Lobisor
    Shukla, Prabodh
    PHYSICAL REVIEW E, 2011, 83 (06):
  • [49] HYPERSCALING, DIMENSIONAL REDUCTION, AND THE RANDOM-FIELD ISING-MODEL
    CHEUNG, HF
    PHYSICAL REVIEW B, 1986, 33 (09): : 6191 - 6195
  • [50] RENORMALIZATION-GROUP FOR THE RANDOM-FIELD ISING-MODEL
    PARMAR, YS
    BHATTACHARJEE, JK
    PHYSICAL REVIEW B, 1992, 46 (02): : 1216 - 1219