Fluctuations and criticality in the random-field Ising model

被引:14
|
作者
Theodorakis, Panagiotis E. [1 ]
Georgiou, Ioannis [2 ,3 ]
Fytas, Nikolaos G. [4 ,5 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[2] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[3] Vienna Univ Technol, Ctr Computat Mat Sci, A-1040 Vienna, Austria
[4] Univ Athens, Dept Phys, GR-15784 Athens, Greece
[5] Coventry Univ, Appl Math Res Ctr, Coventry CV1 5FB, W Midlands, England
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
关键词
SPACE RENORMALIZATION-GROUP; LOWER CRITICAL DIMENSION; PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; RANDOM-SYSTEMS; MONTE-CARLO; MULTICRITICAL POINTS; TRICRITICAL POINTS; GROUND-STATES; UNIVERSALITY;
D O I
10.1103/PhysRevE.87.032119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the critical properties of the d = 3 random-field Ising model with a Gaussian field distribution at zero temperature. By implementing suitable graph-theoretical algorithms, we perform a large-scale numerical simulation of the model for a vast range of values of the disorder strength h and system sizes V = L x L x L, with L <= 156. Using the sample-to-sample fluctuations of various quantities and proper finite-size scaling techniques we estimate with high accuracy the critical disorder strength h(c) and the correlation length exponent nu. Additional simulations in the area of the estimated critical-field strength and relevant scaling analysis of the bond energy suggest bounds for the specific heat critical exponent alpha and the violation of the hyperscaling exponent theta. Finally, a data collapse analysis of the order parameter and disconnected susceptibility provides accurate estimates for the critical exponent ratios beta/nu and (gamma) over bar/nu, respectively. DOI: 10.1103/PhysRevE.87.032119
引用
收藏
页数:8
相关论文
共 50 条
  • [31] RANDOM-FIELD ISING-MODEL AS A DYNAMIC SYSTEM
    SATIJA, II
    PHYSICAL REVIEW B, 1987, 35 (13): : 6877 - 6879
  • [32] LONGITUDINAL AND TRANSVERSE RANDOM-FIELD ISING-MODEL
    WANG, YQ
    LI, ZY
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (46) : 10067 - 10074
  • [33] Monte carlo study of the random-field Ising model
    Newman, MEJ
    Barkema, GT
    PHYSICAL REVIEW E, 1996, 53 (01): : 393 - 404
  • [34] Ground state nonuniversality in the random-field Ising model
    Duxbury, PM
    Meinke, JH
    PHYSICAL REVIEW E, 2001, 64 (03): : 4
  • [35] FRACTAL MEASURES IN THE RANDOM-FIELD ISING-MODEL
    EVANGELOU, SN
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (23): : L511 - L519
  • [36] DOMAIN GROWTH IN THE RANDOM-FIELD ISING-MODEL
    GRANT, M
    GUNTON, JD
    PHYSICAL REVIEW B, 1984, 29 (03): : 1521 - 1523
  • [37] Monte Carlo simulations of the random-field Ising model
    Barber, WC
    Belanger, DP
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 : 545 - 547
  • [38] Scaling of the random-field Ising model at zero temperature
    Swift, MR
    Bray, AJ
    Maritan, A
    Cieplak, M
    Banavar, JR
    EUROPHYSICS LETTERS, 1997, 38 (04): : 273 - 278
  • [39] Avalanches and perturbation theory in the random-field Ising model
    Tarjus, Gilles
    Tissier, Matthieu
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [40] Review of Recent Developments in the Random-Field Ising Model
    Nikolaos G. Fytas
    Víctor Martín-Mayor
    Marco Picco
    Nicolas Sourlas
    Journal of Statistical Physics, 2018, 172 : 665 - 672