Fluctuations and criticality in the random-field Ising model

被引:14
|
作者
Theodorakis, Panagiotis E. [1 ]
Georgiou, Ioannis [2 ,3 ]
Fytas, Nikolaos G. [4 ,5 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[2] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[3] Vienna Univ Technol, Ctr Computat Mat Sci, A-1040 Vienna, Austria
[4] Univ Athens, Dept Phys, GR-15784 Athens, Greece
[5] Coventry Univ, Appl Math Res Ctr, Coventry CV1 5FB, W Midlands, England
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
关键词
SPACE RENORMALIZATION-GROUP; LOWER CRITICAL DIMENSION; PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; RANDOM-SYSTEMS; MONTE-CARLO; MULTICRITICAL POINTS; TRICRITICAL POINTS; GROUND-STATES; UNIVERSALITY;
D O I
10.1103/PhysRevE.87.032119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the critical properties of the d = 3 random-field Ising model with a Gaussian field distribution at zero temperature. By implementing suitable graph-theoretical algorithms, we perform a large-scale numerical simulation of the model for a vast range of values of the disorder strength h and system sizes V = L x L x L, with L <= 156. Using the sample-to-sample fluctuations of various quantities and proper finite-size scaling techniques we estimate with high accuracy the critical disorder strength h(c) and the correlation length exponent nu. Additional simulations in the area of the estimated critical-field strength and relevant scaling analysis of the bond energy suggest bounds for the specific heat critical exponent alpha and the violation of the hyperscaling exponent theta. Finally, a data collapse analysis of the order parameter and disconnected susceptibility provides accurate estimates for the critical exponent ratios beta/nu and (gamma) over bar/nu, respectively. DOI: 10.1103/PhysRevE.87.032119
引用
收藏
页数:8
相关论文
共 50 条
  • [21] SCALING THEORY OF THE RANDOM-FIELD ISING-MODEL
    BRAY, AJ
    MOORE, MA
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (28): : L927 - L933
  • [22] Study of metastable states in the random-field Ising model
    Magni, A
    Basso, V
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 290 : 460 - 463
  • [23] METASTABLE STATES IN THE RANDOM-FIELD ISING-MODEL
    GRANT, M
    GUNTON, JD
    PHYSICAL REVIEW B, 1987, 35 (10): : 4922 - 4928
  • [24] TRICRITICAL POINT IN RANDOM-FIELD ISING-MODEL
    MATTIS, DC
    PHYSICAL REVIEW LETTERS, 1985, 55 (27) : 3009 - 3009
  • [25] Universality aspects of the trimodal random-field Ising model
    N.G. Fytas
    P.E. Theodorakis
    I. Georgiou
    The European Physical Journal B, 2012, 85
  • [26] Characterization of kinetic coarsening in a random-field Ising model
    Mandal, Pradipta Kumar
    Sinha, Suman
    PHYSICAL REVIEW E, 2014, 89 (04):
  • [27] RANDOM-FIELD ISING-MODEL ON A BETHE LATTICE
    BRUINSMA, R
    PHYSICAL REVIEW B, 1984, 30 (01): : 289 - 299
  • [28] STATIC PROPERTIES OF THE RANDOM-FIELD ISING-MODEL
    VILFAN, I
    COWLEY, RA
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (26): : 5055 - 5063
  • [29] FORMATION OF DOMAINS IN THE RANDOM-FIELD ISING-MODEL
    CAMBIER, JL
    NAUENBERG, M
    PHYSICAL REVIEW B, 1986, 34 (11): : 7998 - 8003
  • [30] GRIFFITH SINGULARITIES IN THE RANDOM-FIELD ISING-MODEL
    DOTSENKO, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (10): : 3397 - 3402